Skip to main content
Top
Published in: Journal of Neurology 1/2017

01-01-2017 | Original Communication

Exercise effects in Huntington disease

Authors: Sebastian Frese, Jens A. Petersen, Maria Ligon-Auer, Sandro Manuel Mueller, Violeta Mihaylova, Saskia M. Gehrig, Veronika Kana, Elisabeth J. Rushing, Evelyn Unterburger, Georg Kägi, Jean-Marc Burgunder, Marco Toigo, Hans H. Jung

Published in: Journal of Neurology | Issue 1/2017

Login to get access

Abstract

Huntington disease (HD) is a relentlessly progressive neurodegenerative disorder with symptoms across a wide range of neurological domains, including cognitive and motor dysfunction. There is still no causative treatment for HD but environmental factors such as passive lifestyle may modulate disease onset and progression. In humans, multidisciplinary rehabilitation has a positive impact on cognitive functions. However, a specific role for exercise as a component of an environmental enrichment effect has been difficult to demonstrate. We aimed at investigating whether endurance training (ET) stabilizes the progression of motor and cognitive dysfunction and ameliorates cardiovascular function in HD patients. Twelve male HD patients (mean ± SD, 54.8 ± 7.1 years) and twelve male controls (49.1 ± 6.8 years) completed 26 weeks of endurance training. Before and after the training intervention, clinical assessments, exercise physiological tests, and a body composition measurement were conducted and a muscle biopsy was taken from M. vastus lateralis. To examine the natural course of the disease, HD patients were additionally assessed 6 months prior to ET. During the ET period, there was a motor deficit stabilization as indicated by the Unified Huntington’s Disease Rating Scale motor section score in HD patients (baseline: 18.6 ± 9.2, pre-training: 26.0 ± 13.7, post-training: 26.8 ± 16.4). Peak oxygen uptake (\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\)) significantly increased in HD patients (∆\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\) = +0.33 ± 0.28 l) and controls (∆\(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\) = +0.29 ± 0.41 l). No adverse effects of the training intervention were reported. Our results confirm that HD patients are amenable to a specific exercise-induced therapeutic strategy indicated by an increased cardiovascular function and a stabilization of motor function.
Literature
1.
go back to reference Baker LD, Frank LL, Foster-Schubert K et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67:71–79PubMedPubMedCentral Baker LD, Frank LL, Foster-Schubert K et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67:71–79PubMedPubMedCentral
2.
go back to reference Benedict RHB, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 12:43–55CrossRef Benedict RHB, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 12:43–55CrossRef
3.
go back to reference Bohlen S, Ekwall C, Hellstrom K et al (2013) Physical therapy in Huntington’s disease—toward objective assessments? Eur J Neurol 20:389–393CrossRefPubMed Bohlen S, Ekwall C, Hellstrom K et al (2013) Physical therapy in Huntington’s disease—toward objective assessments? Eur J Neurol 20:389–393CrossRefPubMed
4.
go back to reference Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16:57–69CrossRefPubMed Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16:57–69CrossRefPubMed
5.
go back to reference Busse M, Khalil H, Brooks S, Quinn L, Rosser A (2012) Practice, progress and future directions for physical therapies in huntingtons disease. J Huntingt Dis 1:175–185 Busse M, Khalil H, Brooks S, Quinn L, Rosser A (2012) Practice, progress and future directions for physical therapies in huntingtons disease. J Huntingt Dis 1:175–185
6.
go back to reference Busse M, Quinn L, Debono K et al (2013) A randomized feasibility study of a 12-week community-based exercise program for people with Huntington’s disease. J Neurol Phys Ther 37:149–158CrossRefPubMed Busse M, Quinn L, Debono K et al (2013) A randomized feasibility study of a 12-week community-based exercise program for people with Huntington’s disease. J Neurol Phys Ther 37:149–158CrossRefPubMed
7.
go back to reference Butters N, Granholm E, Salmon DP, Grant I, Wolfe J (1987) Episodic and semantic memory: a comparison of amnesic and demented patients. J Clin Exp Neuropsychol 9:479–497CrossRefPubMed Butters N, Granholm E, Salmon DP, Grant I, Wolfe J (1987) Episodic and semantic memory: a comparison of amnesic and demented patients. J Clin Exp Neuropsychol 9:479–497CrossRefPubMed
8.
go back to reference Butters N, Wolfe J, Granholm E, Martone M (1986) An assessment of verbal recall, recognition and fluency abilities in patients with Huntington’s disease. Cortex 22:11–32CrossRefPubMed Butters N, Wolfe J, Granholm E, Martone M (1986) An assessment of verbal recall, recognition and fluency abilities in patients with Huntington’s disease. Cortex 22:11–32CrossRefPubMed
9.
go back to reference Cruickshank TM, Thompson JA, Dominguez DJ et al (2015) The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: an exploratory study. Brain Behav 5:e00312CrossRefPubMedPubMedCentral Cruickshank TM, Thompson JA, Dominguez DJ et al (2015) The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: an exploratory study. Brain Behav 5:e00312CrossRefPubMedPubMedCentral
10.
go back to reference van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34CrossRefPubMedPubMedCentral van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34CrossRefPubMedPubMedCentral
11.
go back to reference Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 23:631–640CrossRefPubMed Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 23:631–640CrossRefPubMed
12.
go back to reference Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks SP (2013) Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol 248:457–469CrossRefPubMed Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks SP (2013) Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol 248:457–469CrossRefPubMed
13.
go back to reference Helgerud J, Hoydal K, Wang E et al (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39:665–671CrossRefPubMed Helgerud J, Hoydal K, Wang E et al (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39:665–671CrossRefPubMed
14.
go back to reference Hodges JR, Salmon DP, Butters N (1990) Differential impairment of semantic and episodic memory in Alzheimer’s and Huntington’s diseases: a controlled prospective study. J Neurol Neurosurg Psychiatry 53:1089–1095CrossRefPubMedPubMedCentral Hodges JR, Salmon DP, Butters N (1990) Differential impairment of semantic and episodic memory in Alzheimer’s and Huntington’s diseases: a controlled prospective study. J Neurol Neurosurg Psychiatry 53:1089–1095CrossRefPubMedPubMedCentral
15.
go back to reference Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef
16.
go back to reference Item F, Nocito A, Thony S et al (2013) Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1alpha and VEGF mRNA abundances. Eur J Appl Physiol 113:1081–1090CrossRefPubMed Item F, Nocito A, Thony S et al (2013) Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1alpha and VEGF mRNA abundances. Eur J Appl Physiol 113:1081–1090CrossRefPubMed
18.
go back to reference Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbusche E, Dom R (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation–a longitudinal follow-up study. J Neurol 251:935–942CrossRefPubMed Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbusche E, Dom R (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation–a longitudinal follow-up study. J Neurol 251:935–942CrossRefPubMed
19.
go back to reference Mattis S (1988) Dementia Rating Scale: professional manual. Psychological Assessment Resources Inc, Odessa Mattis S (1988) Dementia Rating Scale: professional manual. Psychological Assessment Resources Inc, Odessa
20.
go back to reference Mattis S (1976) Mental status examination for organic mental syndrome in the elderly patient. In: Bellack L, Karasu T (ed) Geriatrics psychiatry: a handbook for psychiatrists and primary care physicians. New York, pp 77–121 Mattis S (1976) Mental status examination for organic mental syndrome in the elderly patient. In: Bellack L, Karasu T (ed) Geriatrics psychiatry: a handbook for psychiatrists and primary care physicians. New York, pp 77–121
21.
go back to reference Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neurosci 141:569–584CrossRef Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neurosci 141:569–584CrossRef
22.
go back to reference Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201CrossRefPubMedPubMedCentral Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201CrossRefPubMedPubMedCentral
23.
go back to reference Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276CrossRef Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276CrossRef
24.
go back to reference Russell AP, Feilchenfeldt J, Schreiber S et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2481–2874CrossRef Russell AP, Feilchenfeldt J, Schreiber S et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2481–2874CrossRef
25.
go back to reference Salmon DP, Kwo-on-Yuen PF, Heindel WC, Butters N, Thal LJ (1989) Differentiation of Alzheimer’s disease and Huntington’s disease with the Dementia Rating Scale. Arch Neurol 46:1204–1208CrossRefPubMed Salmon DP, Kwo-on-Yuen PF, Heindel WC, Butters N, Thal LJ (1989) Differentiation of Alzheimer’s disease and Huntington’s disease with the Dementia Rating Scale. Arch Neurol 46:1204–1208CrossRefPubMed
26.
go back to reference Smith A (1973) Symbol digit modalities test manual. Western Psychological Services, Los Angeles Smith A (1973) Symbol digit modalities test manual. Western Psychological Services, Los Angeles
27.
go back to reference Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662CrossRef Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662CrossRef
Metadata
Title
Exercise effects in Huntington disease
Authors
Sebastian Frese
Jens A. Petersen
Maria Ligon-Auer
Sandro Manuel Mueller
Violeta Mihaylova
Saskia M. Gehrig
Veronika Kana
Elisabeth J. Rushing
Evelyn Unterburger
Georg Kägi
Jean-Marc Burgunder
Marco Toigo
Hans H. Jung
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 1/2017
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8310-1

Other articles of this Issue 1/2017

Journal of Neurology 1/2017 Go to the issue