Skip to main content
Top
Published in: Journal of Neurology 8/2016

01-08-2016 | Original Communication

Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson’s disease: a randomized, blinded study

Authors: Karlo J. Lizarraga, Jonathan R. Jagid, Corneliu C. Luca

Published in: Journal of Neurology | Issue 8/2016

Login to get access

Abstract

Gait dysfunction in Parkinson’s disease (PD) does not always respond to bilateral subthalamic nucleus deep brain stimulation (STN-DBS). Since right hemisphere motor networks may be dominant for gait control, identical stimulation of asymmetric circuits could account for gait dysfunction. We compared the effects of bilateral and unilateral STN-DBS on gait kinematics in PD patients who developed gait impairment after STN-DBS. Twenty-two PD patients with >50 % improvement in motor scores, but dopamine-resistant gait dysfunction 6–12 months after bilateral STN-DBS were blindly tested off dopaminergic effects in four randomly assigned DBS conditions: bilateral, right-sided, left-sided and off stimulation. Motor scores (MDS-UPDRS III), gait scores (MDS-UPRDS 2.11–2.13 + 3.9–3.13), turning time (seconds), stride length (meters) and velocity (meters/second) were measured 1 h after DBS changes. Motor and gait scores significantly improved with bilateral versus unilateral STN-DBS. Stride length and velocity (0.95 ± 0.06, 0.84 ± 0.07) significantly improved with bilateral (1.09 ± 0.04, 0.95 ± 0.05), right-sided (1.06 ± 0.04, 0.92 ± 0.05) and left-sided stimulation (1.01 ± 0.05, 0.90 ± 0.05) (p < 0.05). Stride length significantly improved with right-sided versus left-sided (0.05 ± 0.02) and bilateral versus left-sided stimulation (0.07 ± 0.02) (p < 0.05). Turning time (4.89 ± 0.6) tended to improve with bilateral (4.13 ± 0.5) (p = 0.15) and right-sided (4.27 ± 0.6) (p = 0.2) more than with left STN-DBS (4.69 ± 0.5) (p = 0.5). Bilateral STN-DBS yields greater improvement in motor and gait scores in PD patients. Yet, unilateral stimulation has similar effects on gait kinematics. Particularly, right-sided stimulation might produce slightly greater improvements. Although the clinical relevance of differential programming of right versus left-sided STN-DBS is unclear, this approach could be considered in the management of treatment-resistant gait dysfunction in PD.
Literature
2.
go back to reference Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C, Parkinson Study Group (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721CrossRefPubMed Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C, Parkinson Study Group (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721CrossRefPubMed
5.
9.
go back to reference Fasano A, Herzog J, Seifert E, Stolze H, Falk D, Reese R, Volkmann J, Deuschl G (2011) Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord 26:844–851. doi:10.1002/mds.23583 CrossRefPubMed Fasano A, Herzog J, Seifert E, Stolze H, Falk D, Reese R, Volkmann J, Deuschl G (2011) Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord 26:844–851. doi:10.​1002/​mds.​23583 CrossRefPubMed
11.
go back to reference Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60:78–81CrossRefPubMed Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60:78–81CrossRefPubMed
Metadata
Title
Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson’s disease: a randomized, blinded study
Authors
Karlo J. Lizarraga
Jonathan R. Jagid
Corneliu C. Luca
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 8/2016
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8191-3

Other articles of this Issue 8/2016

Journal of Neurology 8/2016 Go to the issue