Skip to main content
Top
Published in: Journal of Neurology 2/2014

01-02-2014 | Review

Recent advances in Parkinson’s disease genetics

Authors: Steven Lubbe, Huw R. Morris

Published in: Journal of Neurology | Issue 2/2014

Login to get access

Abstract

The last 5 years have seen rapid progress in Parkinson’s disease (PD) genetics, with the publication of a series of large-scale genome wide association studies for PD, and evaluation of the roles of the LRRK2 and GBA genes in the aetiology of PD. We are beginning to develop a coherent picture of the interplay of Mendelian and non-Mendelian factors in PD. Pathways involved in mitochondrial quality control (mitophagy), lysosomal function and immune function are emerging as important in the pathogenesis of PD. These pathways represent a target for therapeutic intervention and a way in which the heterogeneity of disease cause, as well as disease mechanism, can be established. In the future, there is likely to be an individualised basis for the treatment of PD, linked to the identification of specific genetic factors.
Literature
2.
go back to reference Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9(1):13–24CrossRefPubMed Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9(1):13–24CrossRefPubMed
3.
go back to reference Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047 (New York, N.Y.)CrossRefPubMed Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047 (New York, N.Y.)CrossRefPubMed
4.
go back to reference Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108CrossRefPubMed Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108CrossRefPubMed
5.
go back to reference Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46 K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173CrossRefPubMed Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46 K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173CrossRefPubMed
6.
go back to reference Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841 (New York, N.Y.)CrossRefPubMed Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841 (New York, N.Y.)CrossRefPubMed
7.
go back to reference Conway KA (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha -synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci 97(2):571–576PubMedCentralCrossRefPubMed Conway KA (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha -synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci 97(2):571–576PubMedCentralCrossRefPubMed
8.
go back to reference Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon Stoessl A, Farrer MJ (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. doi:10.1002/mds.25421 Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon Stoessl A, Farrer MJ (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. doi:10.​1002/​mds.​25421
10.
go back to reference Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL (2013) α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 125(5):753–769. doi:10.1007/s00401-013-1096-7 PubMedCentralCrossRefPubMed Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL (2013) α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 125(5):753–769. doi:10.​1007/​s00401-013-1096-7 PubMedCentralCrossRefPubMed
11.
go back to reference Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr A, Melki R, Verny C, Brice A; for the French Parkinson's Disease Genetics (PDG) Study Group (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. doi:10.1002/ana.23894 Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr A, Melki R, Verny C, Brice A; for the French Parkinson's Disease Genetics (PDG) Study Group (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. doi:10.​1002/​ana.​23894
12.
go back to reference Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH et al (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99(6):663–672CrossRefPubMed Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH et al (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99(6):663–672CrossRefPubMed
13.
go back to reference Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590PubMedCentralCrossRefPubMed Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590PubMedCentralCrossRefPubMed
14.
go back to reference Hassin-Baer S, Laitman Y, Azizi E, Molchadski I, Galore-Haskel G, Barak F et al (2009) The leucine rich repeat kinase 2 (LRRK2) G2019S substitution mutation. Association with Parkinson disease, malignant melanoma and prevalence in ethnic groups in Israel. J Neurol 256(3):483–487CrossRefPubMed Hassin-Baer S, Laitman Y, Azizi E, Molchadski I, Galore-Haskel G, Barak F et al (2009) The leucine rich repeat kinase 2 (LRRK2) G2019S substitution mutation. Association with Parkinson disease, malignant melanoma and prevalence in ethnic groups in Israel. J Neurol 256(3):483–487CrossRefPubMed
15.
go back to reference Lesage S, Dürr A, Tazir M, Lohmann E, Leutenegger A-L, Janin S et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 354(4):422–423CrossRefPubMed Lesage S, Dürr A, Tazir M, Lohmann E, Leutenegger A-L, Janin S et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 354(4):422–423CrossRefPubMed
16.
go back to reference Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354(4):424–425CrossRefPubMed Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354(4):424–425CrossRefPubMed
17.
go back to reference Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, Van der Brug M et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600CrossRefPubMed Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, Van der Brug M et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600CrossRefPubMed
18.
go back to reference Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607CrossRefPubMed Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607CrossRefPubMed
19.
go back to reference Latourelle JC, Sun M, Lew MF, Suchowersky O, Klein C, Golbe LI et al (2008) The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson’s disease: the GenePD study. BMC Med 6:32PubMedCentralCrossRefPubMed Latourelle JC, Sun M, Lew MF, Suchowersky O, Klein C, Golbe LI et al (2008) The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson’s disease: the GenePD study. BMC Med 6:32PubMedCentralCrossRefPubMed
20.
go back to reference Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11(12):791–797. doi:10.1038/nrn2935 Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11(12):791–797. doi:10.​1038/​nrn2935
22.
go back to reference Lewis PA (2009) The function of ROCO proteins in health and disease. Biol Cell/Under Auspices Eur Cell Biol Organ 101(3):183–191CrossRef Lewis PA (2009) The function of ROCO proteins in health and disease. Biol Cell/Under Auspices Eur Cell Biol Organ 101(3):183–191CrossRef
24.
go back to reference Bajaj A, Driver JA, Schernhammer ES (2010) Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control: CCC 21(5):697–707CrossRefPubMed Bajaj A, Driver JA, Schernhammer ES (2010) Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control: CCC 21(5):697–707CrossRefPubMed
25.
26.
go back to reference Saunders-Pullman R, Barrett MJ, Stanley KM, Luciano MS, Shanker V, Severt L et al (2010) LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease. Mov Disord: Off J Mov Disord Soc 25(15):2536–2541CrossRef Saunders-Pullman R, Barrett MJ, Stanley KM, Luciano MS, Shanker V, Severt L et al (2010) LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease. Mov Disord: Off J Mov Disord Soc 25(15):2536–2541CrossRef
27.
go back to reference Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ et al (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167PubMedCentralCrossRefPubMed Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ et al (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167PubMedCentralCrossRefPubMed
28.
go back to reference Lesage S, Condroyer C, Klebe S, Honoré A, Tison F, Brefel-Courbon C, Dürr A, Brice A; French Parkinson’s Disease Genetics Study Group (2012) Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78(18):1449–1450. doi:10.1212/WNL.0b013e318253d5f2 Lesage S, Condroyer C, Klebe S, Honoré A, Tison F, Brefel-Courbon C, Dürr A, Brice A; French Parkinson’s Disease Genetics Study Group (2012) Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78(18):1449–1450. doi:10.​1212/​WNL.​0b013e318253d5f2​
29.
go back to reference Sharma M, Ioannidis JP a, Aasly JO, Annesi G, Brice A, Bertram L et al (2012) A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet 49(11):721–726PubMedCentralCrossRefPubMed Sharma M, Ioannidis JP a, Aasly JO, Annesi G, Brice A, Bertram L et al (2012) A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet 49(11):721–726PubMedCentralCrossRefPubMed
30.
go back to reference Sheerin U-M, Charlesworth G, Bras J, Guerreiro R, Bhatia K, Foltynie T et al (2012) Screening for VPS35 mutations in Parkinson’s disease. Neurobiol Aging 33(4):838.e1–838.e5CrossRef Sheerin U-M, Charlesworth G, Bras J, Guerreiro R, Bhatia K, Foltynie T et al (2012) Screening for VPS35 mutations in Parkinson’s disease. Neurobiol Aging 33(4):838.e1–838.e5CrossRef
31.
go back to reference Ando M, Funayama M, Li Y, Kashihara K, Murakami Y, Ishizu N et al (2012) VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 27(11):1413–1417CrossRef Ando M, Funayama M, Li Y, Kashihara K, Murakami Y, Ishizu N et al (2012) VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 27(11):1413–1417CrossRef
32.
go back to reference Chartier-Harlin M-C, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F, Hulihan MM et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89(3):398–406PubMedCentralCrossRefPubMed Chartier-Harlin M-C, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F, Hulihan MM et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89(3):398–406PubMedCentralCrossRefPubMed
33.
go back to reference Tucci A, Charlesworth G, Sheerin U-M, Plagnol V, Wood NW, Hardy J (2012) Study of the genetic variability in a Parkinson’s disease gene: EIF4G1. Neurosci Lett 518(1):19–22PubMedCentralCrossRefPubMed Tucci A, Charlesworth G, Sheerin U-M, Plagnol V, Wood NW, Hardy J (2012) Study of the genetic variability in a Parkinson’s disease gene: EIF4G1. Neurosci Lett 518(1):19–22PubMedCentralCrossRefPubMed
34.
go back to reference Nuytemans K, Bademci G, Inchausti V, Dressen A, Kinnamon DD, Mehta A et al (2013) Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 80(11):982–989PubMedCentralCrossRefPubMed Nuytemans K, Bademci G, Inchausti V, Dressen A, Kinnamon DD, Mehta A et al (2013) Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 80(11):982–989PubMedCentralCrossRefPubMed
35.
go back to reference Lesage S, Condroyer C, Klebe S, Lohmann E, Durif F, Damier P et al (2012) EIF4G1 in familial Parkinson’s disease: pathogenic mutations or rare benign variants? Neurobiol Aging 33(9):2233.e1–2233.e5CrossRef Lesage S, Condroyer C, Klebe S, Lohmann E, Durif F, Damier P et al (2012) EIF4G1 in familial Parkinson’s disease: pathogenic mutations or rare benign variants? Neurobiol Aging 33(9):2233.e1–2233.e5CrossRef
36.
go back to reference Schulte EC, Mollenhauer B, Zimprich A, Bereznai B, Lichtner P, Haubenberger D et al (2012) Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson’s disease. Neurogenetics 13(3):281–285CrossRefPubMed Schulte EC, Mollenhauer B, Zimprich A, Bereznai B, Lichtner P, Haubenberger D et al (2012) Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson’s disease. Neurogenetics 13(3):281–285CrossRefPubMed
37.
go back to reference Kitada T, Askawa S, Hattori N, Matsumine H, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608CrossRefPubMed Kitada T, Askawa S, Hattori N, Matsumine H, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608CrossRefPubMed
38.
go back to reference Kilarski LL, Pearson JP, Newsway V, Majounie E, Knipe MDW, Misbahuddin A et al (2012) Systematic Review and UK-Based Study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 27(12):1522–1529CrossRefPubMed Kilarski LL, Pearson JP, Newsway V, Majounie E, Knipe MDW, Misbahuddin A et al (2012) Systematic Review and UK-Based Study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 27(12):1522–1529CrossRefPubMed
39.
go back to reference Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780PubMedCentralCrossRefPubMed Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780PubMedCentralCrossRefPubMed
40.
go back to reference Shimura H, Hattori N, Kubo S i, Mizuno Y, Asakawa S, Minoshima S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305CrossRefPubMed Shimura H, Hattori N, Kubo S i, Mizuno Y, Asakawa S, Minoshima S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305CrossRefPubMed
41.
go back to reference Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160 (New York, N.Y.)CrossRefPubMed Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160 (New York, N.Y.)CrossRefPubMed
43.
go back to reference Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H et al (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15(6):883–895CrossRefPubMed Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H et al (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15(6):883–895CrossRefPubMed
44.
go back to reference Shin J-H, Ko HS, Kang H, Lee Y, Lee Y-I, Pletinkova O et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702PubMedCentralCrossRefPubMed Shin J-H, Ko HS, Kang H, Lee Y, Lee Y-I, Pletinkova O et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702PubMedCentralCrossRefPubMed
45.
go back to reference Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166CrossRefPubMed Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166CrossRefPubMed
46.
go back to reference Park J, Lee SB, Lee S, Kim Y, Song S, Kim S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161CrossRefPubMed Park J, Lee SB, Lee S, Kim Y, Song S, Kim S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161CrossRefPubMed
47.
go back to reference Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–638PubMedCentralCrossRefPubMed Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–638PubMedCentralCrossRefPubMed
48.
go back to reference Bonifati V, Rizzu P, Van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259 (New York, N.Y.)CrossRefPubMed Bonifati V, Rizzu P, Van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259 (New York, N.Y.)CrossRefPubMed
49.
go back to reference Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101(24):9103–9108PubMedCentralCrossRefPubMed Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101(24):9103–9108PubMedCentralCrossRefPubMed
50.
go back to reference Miyakawa S, Ogino M, Funabe S, Uchino A, Shimo Y, Hattori N et al (2013) Lewy body pathology in a patient with a homozygous Parkin deletion. Mov Disord: Off J Mov Disord Soc 28(3):388–391CrossRef Miyakawa S, Ogino M, Funabe S, Uchino A, Shimo Y, Hattori N et al (2013) Lewy body pathology in a patient with a homozygous Parkin deletion. Mov Disord: Off J Mov Disord Soc 28(3):388–391CrossRef
51.
go back to reference Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE et al (2013) Parkin disease: A clinicopathologic entity? JAMA Neurol 4:1–9 Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE et al (2013) Parkin disease: A clinicopathologic entity? JAMA Neurol 4:1–9
52.
go back to reference Ahlskog JE (2009) Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson’s disease. Parkinsonism Relat Disord 15(10):721–727PubMedCentralCrossRefPubMed Ahlskog JE (2009) Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson’s disease. Parkinsonism Relat Disord 15(10):721–727PubMedCentralCrossRefPubMed
53.
go back to reference Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191CrossRefPubMed Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191CrossRefPubMed
54.
go back to reference Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J Neurosci: Off J Soc Neurosci 32(12):4240–4246CrossRef Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J Neurosci: Off J Soc Neurosci 32(12):4240–4246CrossRef
55.
go back to reference Paisán-Ruiz C, Guevara R, Federoff M, Hanagasi H, Sina F, Elahi E et al (2010) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord: Off J Mov Disord Soc 25(12):1791–1800CrossRef Paisán-Ruiz C, Guevara R, Federoff M, Hanagasi H, Sina F, Elahi E et al (2010) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord: Off J Mov Disord Soc 25(12):1791–1800CrossRef
56.
go back to reference Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23CrossRefPubMed Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23CrossRefPubMed
57.
go back to reference Kauther KM, Höft C, Rissling I, Oertel WH, Möller JC (2011) The PLA2G6 gene in early-onset Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 26(13):2415–2417CrossRef Kauther KM, Höft C, Rissling I, Oertel WH, Möller JC (2011) The PLA2G6 gene in early-onset Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 26(13):2415–2417CrossRef
58.
go back to reference Di Fonzo A, Dekker MCJ, Montagna P, Baruzzi A, Yonova EH (2009) Correia Guedes L, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245CrossRefPubMed Di Fonzo A, Dekker MCJ, Montagna P, Baruzzi A, Yonova EH (2009) Correia Guedes L, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245CrossRefPubMed
59.
go back to reference Deng H, Liang H, Jankovic J (2012) F-Box Only Protein 7 Gene in Parkinsonian-Pyramidal Disease. Archives Neurol 1:1–5 Deng H, Liang H, Jankovic J (2012) F-Box Only Protein 7 Gene in Parkinsonian-Pyramidal Disease. Archives Neurol 1:1–5
60.
go back to reference Simón-Sánchez J, Kilarski LL, Nalls MA, Martinez M, Schulte C, Holmans P et al (2012) Cooperative genome-wide analysis shows increased homozygosity in early onset Parkinson’s disease. PLoS ONE 7(3):e28787PubMedCentralCrossRefPubMed Simón-Sánchez J, Kilarski LL, Nalls MA, Martinez M, Schulte C, Holmans P et al (2012) Cooperative genome-wide analysis shows increased homozygosity in early onset Parkinson’s disease. PLoS ONE 7(3):e28787PubMedCentralCrossRefPubMed
61.
go back to reference Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312PubMedCentralCrossRefPubMed Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312PubMedCentralCrossRefPubMed
62.
go back to reference Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMed Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMed
63.
go back to reference Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA et al (2012) Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann Neurol 71(3):370–384PubMedCentralCrossRefPubMed Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA et al (2012) Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann Neurol 71(3):370–384PubMedCentralCrossRefPubMed
64.
go back to reference Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW et al (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124(6):593–605PubMedCentralCrossRefPubMed Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW et al (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124(6):593–605PubMedCentralCrossRefPubMed
65.
go back to reference Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW et al (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109PubMedCentralCrossRefPubMed Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW et al (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109PubMedCentralCrossRefPubMed
66.
go back to reference Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785PubMedCentralCrossRefPubMed Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785PubMedCentralCrossRefPubMed
67.
go back to reference Saad M, Lesage S, Saint-Pierre A, Corvol J-C, Zelenika D, Lambert J-C et al (2011) Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Hum Mol Genet 20(3):615–627CrossRefPubMed Saad M, Lesage S, Saint-Pierre A, Corvol J-C, Zelenika D, Lambert J-C et al (2011) Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Hum Mol Genet 20(3):615–627CrossRefPubMed
68.
go back to reference Spencer CCA, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G et al (2011) Dissection of the genetics of Parkinson’s disease identifies an additional association 5’ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet 20(2):345–353PubMedCentralCrossRefPubMed Spencer CCA, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G et al (2011) Dissection of the genetics of Parkinson’s disease identifies an additional association 5’ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet 20(2):345–353PubMedCentralCrossRefPubMed
69.
go back to reference Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin U-M, Saad M et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649CrossRefPubMed Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin U-M, Saad M et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649CrossRefPubMed
70.
go back to reference Plagnol V, Nalls MA, Bras JM, Hernandez DG, Sharma M, Sheerin U-M et al (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7(6):e1002142CrossRef Plagnol V, Nalls MA, Bras JM, Hernandez DG, Sharma M, Sheerin U-M et al (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7(6):e1002142CrossRef
71.
go back to reference Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U et al (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 7(6):e1002141PubMedCentralCrossRefPubMed Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U et al (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 7(6):e1002141PubMedCentralCrossRefPubMed
72.
go back to reference Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H et al (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12:104PubMedCentralCrossRefPubMed Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H et al (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12:104PubMedCentralCrossRefPubMed
73.
go back to reference Pihlstrøm L, Axelsson G, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L et al (2012) Supportive evidence for 11 loci from genome-wide association studies in Parkinson’s disease. Neurobiol Aging 34(6):1708.e7–1708.e13CrossRef Pihlstrøm L, Axelsson G, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L et al (2012) Supportive evidence for 11 loci from genome-wide association studies in Parkinson’s disease. Neurobiol Aging 34(6):1708.e7–1708.e13CrossRef
74.
go back to reference Sharma M, Ioannidis JPA, Aasly JO, Annesi G, Brice A, Van Broeckhoven C et al (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79(7):659–667PubMedCentralCrossRefPubMed Sharma M, Ioannidis JPA, Aasly JO, Annesi G, Brice A, Van Broeckhoven C et al (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79(7):659–667PubMedCentralCrossRefPubMed
76.
go back to reference Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRefPubMed Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRefPubMed
77.
go back to reference Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J et al (2012) Using genome-wide complex trait analysis to quantify “missing heritability” in Parkinson’s disease. Hum Mol Genet 21(22):4996–5009PubMedCentralCrossRefPubMed Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J et al (2012) Using genome-wide complex trait analysis to quantify “missing heritability” in Parkinson’s disease. Hum Mol Genet 21(22):4996–5009PubMedCentralCrossRefPubMed
78.
go back to reference Evangelou E, Maraganore DM, Annesi G, Brighina L, Brice A, Elbaz A et al (2010) Non-replication of association for six polymorphisms from meta-analysis of genome-wide association studies of Parkinson’s disease: large-scale collaborative study. Am J Med Genet Part b, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 153B(1):220–228 Evangelou E, Maraganore DM, Annesi G, Brighina L, Brice A, Elbaz A et al (2010) Non-replication of association for six polymorphisms from meta-analysis of genome-wide association studies of Parkinson’s disease: large-scale collaborative study. Am J Med Genet Part b, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 153B(1):220–228
79.
go back to reference Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME, Wong K et al (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79(2):104–109CrossRefPubMed Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME, Wong K et al (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79(2):104–109CrossRefPubMed
80.
go back to reference Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E et al (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM: Mon J Assoc Physicians 89(9):691–694CrossRef Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E et al (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM: Mon J Assoc Physicians 89(9):691–694CrossRef
81.
go back to reference Tayebi N, Callahan M, Madike V, Stubblefield BK, Orvisky E, Krasnewich D et al (2001) Gaucher disease and Parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 73(4):313–321CrossRefPubMed Tayebi N, Callahan M, Madike V, Stubblefield BK, Orvisky E, Krasnewich D et al (2001) Gaucher disease and Parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 73(4):313–321CrossRefPubMed
82.
go back to reference Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain: J Neurol 132(Pt 7):1783–1794CrossRef Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain: J Neurol 132(Pt 7):1783–1794CrossRef
83.
go back to reference Sidransky E, Nalls M a, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661PubMedCentralCrossRefPubMed Sidransky E, Nalls M a, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661PubMedCentralCrossRefPubMed
84.
go back to reference Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T et al (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain: J Neurol 136(Pt 2):392–399CrossRef Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T et al (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain: J Neurol 136(Pt 2):392–399CrossRef
85.
go back to reference McNeill A, Duran R, Hughes DA, Mehta A, Schapira AHV (2012) A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatr 83(8):853–854PubMedCentralCrossRefPubMed McNeill A, Duran R, Hughes DA, Mehta A, Schapira AHV (2012) A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatr 83(8):853–854PubMedCentralCrossRefPubMed
86.
go back to reference Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72(3):455–463PubMedCentralCrossRefPubMed Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72(3):455–463PubMedCentralCrossRefPubMed
87.
go back to reference Singleton A, Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet 20(2):158–162CrossRef Singleton A, Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet 20(2):158–162CrossRef
89.
go back to reference Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenergetics Biomembranes 41(6):499–503CrossRef Whitworth AJ, Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenergetics Biomembranes 41(6):499–503CrossRef
90.
go back to reference Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SHY et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879PubMedCentralCrossRefPubMed Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SHY et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879PubMedCentralCrossRefPubMed
91.
go back to reference Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H et al (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287(41):34635–34645PubMedCentralCrossRefPubMed Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H et al (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287(41):34635–34645PubMedCentralCrossRefPubMed
92.
go back to reference Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803PubMedCentralCrossRefPubMed Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803PubMedCentralCrossRefPubMed
93.
94.
go back to reference Gegg ME, Cooper JM, Chau K-Y, Rojo M, Schapira AHV, Taanman J-W (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870PubMedCentralCrossRefPubMed Gegg ME, Cooper JM, Chau K-Y, Rojo M, Schapira AHV, Taanman J-W (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870PubMedCentralCrossRefPubMed
95.
go back to reference Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107(11):5018–5023PubMedCentralCrossRefPubMed Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107(11):5018–5023PubMedCentralCrossRefPubMed
96.
97.
go back to reference Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P et al (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8(3):e1002537PubMedCentralCrossRefPubMed Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P et al (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8(3):e1002537PubMedCentralCrossRefPubMed
98.
go back to reference Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D et al (2011) PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147(4):893–906PubMedCentralCrossRefPubMed Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D et al (2011) PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147(4):893–906PubMedCentralCrossRefPubMed
99.
go back to reference Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287(48):40652–40660PubMedCentralCrossRefPubMed Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287(48):40652–40660PubMedCentralCrossRefPubMed
100.
go back to reference Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131CrossRefPubMed Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131CrossRefPubMed
101.
go back to reference Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52. doi:10.1016/j.cell.2011.06.001 Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52. doi:10.​1016/​j.​cell.​2011.​06.​001
102.
go back to reference Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A, Buchel F et al (2013) A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet 22(5):1039–1049PubMedCentralCrossRefPubMed Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A, Buchel F et al (2013) A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet 22(5):1039–1049PubMedCentralCrossRefPubMed
103.
go back to reference Saiki M, Baker A, Williams-Gray CH, Foltynie T, Goodman RS, Taylor CJ et al (2010) Association of the human leucocyte antigen region with susceptibility to Parkinson’s disease. J Neurol Neurosurg Psychiatr 81(8):890–891CrossRefPubMed Saiki M, Baker A, Williams-Gray CH, Foltynie T, Goodman RS, Taylor CJ et al (2010) Association of the human leucocyte antigen region with susceptibility to Parkinson’s disease. J Neurol Neurosurg Psychiatr 81(8):890–891CrossRefPubMed
104.
go back to reference McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 23(4):474–483CrossRef McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 23(4):474–483CrossRef
105.
go back to reference Charlesworth G, Gandhi S, Bras JM, Barker RA, Burn DJ, Chinnery PF et al (2012) Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiol Aging 33(4):838.e7–838.e11CrossRef Charlesworth G, Gandhi S, Bras JM, Barker RA, Burn DJ, Chinnery PF et al (2012) Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiol Aging 33(4):838.e7–838.e11CrossRef
Metadata
Title
Recent advances in Parkinson’s disease genetics
Authors
Steven Lubbe
Huw R. Morris
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 2/2014
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-013-7003-2

Other articles of this Issue 2/2014

Journal of Neurology 2/2014 Go to the issue