Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 6/2019

01-09-2019 | Original Paper

STX1A gene variations contribute to the susceptibility of children attention-deficit/hyperactivity disorder: a case–control association study

Authors: Min Wang, Xue Gu, Xin Huang, Qi Zhang, Xinzhen Chen, Jing Wu

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 6/2019

Login to get access

Abstract

It was presumed syntaxin-1A (STX1A) might relate to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), but the results were inconsistent. The present study aims to confirm whether the STX1A gene is involved in the susceptibility of children ADHD. We genotyped three single nucleotide polymorphisms (SNPs) of STX1A gene using Sequenom MassARRAY technology. A case–control study was performed among Chinese Han population including 754 cases and 772 controls from two different provinces. The Conners Parent Symptom Questionnaire and Integrated Visual and Auditory Continuous Performance Test were used to assess ADHD clinical symptoms. We found for the first time that rs3793243 GG genotype carriers had a lower risk of ADHD compared with AA genotype (OR 0.564, 95% confidence interval (CI) 0.406–0.692, P = 0.001), and rs875342 was also associated with children ADHD (OR 1.806, 95% CI 1.349–2.591, P = 0.001). In addition, the two positive SNPs were also significantly associated with the clinical characteristics of ADHD. Expression quantitative trait loci analysis indicated that rs3793243 might mediate STX1A gene expression. Using a case–control study to explore the association between STX1A gene and children ADHD in Chinese Han population, our results suggest STX1A genetic variants might contribute to the susceptibility of children ADHD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Austerman J (2015) ADHD and behavioral disorders: Assessment, management, and an update from DSM-5. Clevel Clin J Med 82(11 Suppl 1):S2–7CrossRef Austerman J (2015) ADHD and behavioral disorders: Assessment, management, and an update from DSM-5. Clevel Clin J Med 82(11 Suppl 1):S2–7CrossRef
2.
3.
go back to reference GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602
4.
5.
go back to reference Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366(9481):237–248CrossRefPubMed Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366(9481):237–248CrossRefPubMed
6.
7.
go back to reference Millichap JG (2011) Attention deficit hyperactivity disorder handbook. Springer, New York, pp 791–792CrossRef Millichap JG (2011) Attention deficit hyperactivity disorder handbook. Springer, New York, pp 791–792CrossRef
9.
go back to reference Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin N Am 33(1):159–180CrossRef Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin N Am 33(1):159–180CrossRef
10.
go back to reference Bokor G, Anderson PD (2014) Attention-deficit/hyperactivity disorder. J Pharm Pract 27(4):336–349CrossRefPubMed Bokor G, Anderson PD (2014) Attention-deficit/hyperactivity disorder. J Pharm Pract 27(4):336–349CrossRefPubMed
11.
go back to reference Elia J et al (2010) Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 15(6):637–646CrossRefPubMed Elia J et al (2010) Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 15(6):637–646CrossRefPubMed
12.
go back to reference Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49CrossRefPubMed Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49CrossRefPubMed
13.
go back to reference Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257(5067):255–259CrossRefPubMed Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257(5067):255–259CrossRefPubMed
14.
go back to reference Oyler GA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109(6 Pt 1):3039–3052CrossRefPubMed Oyler GA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109(6 Pt 1):3039–3052CrossRefPubMed
15.
16.
17.
go back to reference Feng Y et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005CrossRefPubMed Feng Y et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005CrossRefPubMed
18.
go back to reference Mill J et al (2005) Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet B Neuropsychiatr Genet 133b(1):68–73CrossRefPubMed Mill J et al (2005) Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet B Neuropsychiatr Genet 133b(1):68–73CrossRefPubMed
19.
go back to reference Kim JW et al (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 144b(6):781–790CrossRefPubMed Kim JW et al (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 144b(6):781–790CrossRefPubMed
20.
go back to reference Guan L et al (2009) A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14(5):546–554CrossRefPubMed Guan L et al (2009) A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14(5):546–554CrossRefPubMed
21.
go back to reference Forero DA et al (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 34(5):361–366PubMedPubMedCentral Forero DA et al (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 34(5):361–366PubMedPubMedCentral
22.
go back to reference Zhang H et al (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15(1):48–52CrossRefPubMed Zhang H et al (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15(1):48–52CrossRefPubMed
23.
go back to reference Sarkar K et al (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37(2):349–357CrossRefPubMed Sarkar K et al (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37(2):349–357CrossRefPubMed
24.
go back to reference Hawi Z et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS ONE 8(4):e60274CrossRefPubMedPubMedCentral Hawi Z et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS ONE 8(4):e60274CrossRefPubMedPubMedCentral
25.
go back to reference Neale BM et al (2008) Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B(8):1337–1344CrossRefPubMedPubMedCentral Neale BM et al (2008) Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B(8):1337–1344CrossRefPubMedPubMedCentral
26.
go back to reference Lasky-Su J et al (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147b(8):1345–1354CrossRefPubMed Lasky-Su J et al (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147b(8):1345–1354CrossRefPubMed
27.
go back to reference Neale BM et al (2010) Case–control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):906–920CrossRefPubMedPubMedCentral Neale BM et al (2010) Case–control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):906–920CrossRefPubMedPubMedCentral
28.
go back to reference Yang L et al (2013) Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B Neuropsychiatr Genet 162B(5):419–430CrossRefPubMed Yang L et al (2013) Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B Neuropsychiatr Genet 162B(5):419–430CrossRefPubMed
29.
go back to reference Mooney MA et al (2016) Pathway analysis in attention deficit hyperactivity disorder: an ensemble approach. Am J Med Genet Part B Neuropsychiatr Genet 171(6):815–826CrossRef Mooney MA et al (2016) Pathway analysis in attention deficit hyperactivity disorder: an ensemble approach. Am J Med Genet Part B Neuropsychiatr Genet 171(6):815–826CrossRef
30.
go back to reference Gao Q et al (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 57:132–139CrossRefPubMed Gao Q et al (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 57:132–139CrossRefPubMed
31.
go back to reference Brookes KJ et al (2005) DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters. Am J Med Genet B Neuropsychiatr Genet 139b(1):33–37CrossRefPubMed Brookes KJ et al (2005) DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters. Am J Med Genet B Neuropsychiatr Genet 139b(1):33–37CrossRefPubMed
32.
go back to reference Brookes K et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11(10):934–953CrossRefPubMed Brookes K et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11(10):934–953CrossRefPubMed
33.
go back to reference Sanchez-Mora C et al (2013) Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. Eur Neuropsychopharmacol 23(6):426–435CrossRefPubMed Sanchez-Mora C et al (2013) Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. Eur Neuropsychopharmacol 23(6):426–435CrossRefPubMed
34.
go back to reference Gong YX, Cai TS (1994) Chinese wechsler intelligence scale for children—revised, vol 2. Map Press Hunan, China, pp 1–6 Gong YX, Cai TS (1994) Chinese wechsler intelligence scale for children—revised, vol 2. Map Press Hunan, China, pp 1–6
35.
go back to reference Springer, U.S. (2011) Conners’ parent rating scale: revised, vol 404. Springer US, New York Springer, U.S. (2011) Conners’ parent rating scale: revised, vol 404. Springer US, New York
36.
go back to reference Fan J (2005) The norm and reliability of the conners parent symptom questionnaire in Chinese urban children. Shanghai Arch Psychiatry 17(6):321–323 Fan J (2005) The norm and reliability of the conners parent symptom questionnaire in Chinese urban children. Shanghai Arch Psychiatry 17(6):321–323
37.
go back to reference Morgan JF (2007) p Value fetishism and use of the Bonferroni adjustment. Evid Based Mental Health 10(2):34–35CrossRef Morgan JF (2007) p Value fetishism and use of the Bonferroni adjustment. Evid Based Mental Health 10(2):34–35CrossRef
38.
go back to reference Lubin JH, Gail MH (1990) On power and sample size for studying features of the relative odds of disease. Am J Epidemiol 131(3):552–566CrossRefPubMed Lubin JH, Gail MH (1990) On power and sample size for studying features of the relative odds of disease. Am J Epidemiol 131(3):552–566CrossRefPubMed
39.
go back to reference Kenar AN et al (2014) Association of VAMP-2 and Syntaxin 1A genes with adult attention deficit hyperactivity disorder. Psychiatry Investig 11(1):76–83CrossRefPubMedPubMedCentral Kenar AN et al (2014) Association of VAMP-2 and Syntaxin 1A genes with adult attention deficit hyperactivity disorder. Psychiatry Investig 11(1):76–83CrossRefPubMedPubMedCentral
40.
go back to reference Olgiati P et al (2014) Role of synaptosome-related (SNARE) genes in adults with attention deficit hyperactivity disorder. Psychiatry Res 215(3):799–800CrossRefPubMed Olgiati P et al (2014) Role of synaptosome-related (SNARE) genes in adults with attention deficit hyperactivity disorder. Psychiatry Res 215(3):799–800CrossRefPubMed
41.
go back to reference Neale BM et al (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):884–897CrossRefPubMedPubMedCentral Neale BM et al (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):884–897CrossRefPubMedPubMedCentral
42.
go back to reference Demontis D et al (2019) Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 51(1):63–75CrossRefPubMed Demontis D et al (2019) Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 51(1):63–75CrossRefPubMed
43.
go back to reference Igarashi M et al (1996) 1224 A t-Snare is involved in axonal growth: botulinum neurotoxin C1 induces growth cone collapse. Neurosci Res 25(Suppl1):S134CrossRef Igarashi M et al (1996) 1224 A t-Snare is involved in axonal growth: botulinum neurotoxin C1 induces growth cone collapse. Neurosci Res 25(Suppl1):S134CrossRef
44.
go back to reference Yamaguchi K et al (1996) Enhancement of neurite-sprouting by suppression of HPC-1/syntaxin 1A activity in cultured vertebrate nerve cells. Brain Res 740(1–2):185–192CrossRefPubMed Yamaguchi K et al (1996) Enhancement of neurite-sprouting by suppression of HPC-1/syntaxin 1A activity in cultured vertebrate nerve cells. Brain Res 740(1–2):185–192CrossRefPubMed
45.
go back to reference Fernandez I et al (1998) Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94(6):841–849CrossRefPubMed Fernandez I et al (1998) Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94(6):841–849CrossRefPubMed
47.
go back to reference Fujiwara T et al (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26(21):5767–5776CrossRefPubMedPubMedCentral Fujiwara T et al (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26(21):5767–5776CrossRefPubMedPubMedCentral
48.
go back to reference Fujiwara T et al (2016) Unusual social behavior in HPC-1/syntaxin1A knockout mice is caused by disruption of the oxytocinergic neural system. J Neurochem 138(1):117–123CrossRefPubMed Fujiwara T et al (2016) Unusual social behavior in HPC-1/syntaxin1A knockout mice is caused by disruption of the oxytocinergic neural system. J Neurochem 138(1):117–123CrossRefPubMed
49.
go back to reference Rovaris DL et al (2014) Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 15(10):1365–1381CrossRefPubMed Rovaris DL et al (2014) Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 15(10):1365–1381CrossRefPubMed
50.
go back to reference Barakauskas VE et al (2010) A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 35(5):1226–1238CrossRefPubMedPubMedCentral Barakauskas VE et al (2010) A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 35(5):1226–1238CrossRefPubMedPubMedCentral
51.
go back to reference da Silva BS et al (2017) Exocytosis-related genes and response to methylphenidate treatment in adults with ADHD. Mol Psychiatry 23(6):1446–1452CrossRefPubMed da Silva BS et al (2017) Exocytosis-related genes and response to methylphenidate treatment in adults with ADHD. Mol Psychiatry 23(6):1446–1452CrossRefPubMed
52.
go back to reference Haase J et al (2001) Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans 29(Pt 6):722–728CrossRefPubMed Haase J et al (2001) Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans 29(Pt 6):722–728CrossRefPubMed
53.
go back to reference Quist JF, Kennedy JL (2001) Genetics of childhood disorders: XXIII. ADHD, Part 7: the serotonin system. J Am Acad Child Adolesc Psychiatry 40(2):253–256CrossRefPubMed Quist JF, Kennedy JL (2001) Genetics of childhood disorders: XXIII. ADHD, Part 7: the serotonin system. J Am Acad Child Adolesc Psychiatry 40(2):253–256CrossRefPubMed
54.
go back to reference Fujiwara T et al (2010) HPC-1/syntaxin 1A gene knockout mice show abnormal behavior possibly related to a disruption in 5-HTergic systems. Eur J Neurosci 32(1):99–107CrossRefPubMed Fujiwara T et al (2010) HPC-1/syntaxin 1A gene knockout mice show abnormal behavior possibly related to a disruption in 5-HTergic systems. Eur J Neurosci 32(1):99–107CrossRefPubMed
55.
go back to reference Yu YX et al (2006) Syntaxin 1A promotes the endocytic sorting of EAAC1 leading to inhibition of glutamate transport. J Cell Sci 119(Pt 18):3776–3787CrossRefPubMed Yu YX et al (2006) Syntaxin 1A promotes the endocytic sorting of EAAC1 leading to inhibition of glutamate transport. J Cell Sci 119(Pt 18):3776–3787CrossRefPubMed
Metadata
Title
STX1A gene variations contribute to the susceptibility of children attention-deficit/hyperactivity disorder: a case–control association study
Authors
Min Wang
Xue Gu
Xin Huang
Qi Zhang
Xinzhen Chen
Jing Wu
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 6/2019
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-019-01010-3

Other articles of this Issue 6/2019

European Archives of Psychiatry and Clinical Neuroscience 6/2019 Go to the issue