Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 8/2017

01-12-2017 | Original Paper

Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: a preliminary prospective study

Authors: Laura Kranaster, Carolin Hoyer, Suna Su Aksay, Jan Malte Bumb, F. Markus Leweke, Christoph Janke, Manfred Thiel, Beat Lutz, Laura Bindila, Alexander Sartorius

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 8/2017

Login to get access

Abstract

Despite the lack of clinical data about the role of the endocannabinoid system (ECS) in affective disorders, preclinical work suggests that the ECS is relevant in both with regard to the etiology of depression as well as the mediation of antidepressant effects. We measured the intraindividual levels of the endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the cerebrospinal fluid of 12 patients suffering from a major depressive episode before and after the antidepressant treatment by electroconvulsive therapy (ECT). AEA was significantly elevated after ECT as compared to baseline. The AEA increase positively correlated with the number of individually performed ECT sessions. Although the sample size was small and confounders were not rigorously controlled for, our finding corroborates preclinical work and should encourage further exploration of the involvement of the ECS in depressive disorder.
Literature
1.
go back to reference Lu HC, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525CrossRefPubMed Lu HC, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525CrossRefPubMed
2.
go back to reference Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318CrossRefPubMed Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318CrossRefPubMed
3.
go back to reference Vinod KY, Hungund BL (2006) Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 10:203–210CrossRefPubMed Vinod KY, Hungund BL (2006) Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 10:203–210CrossRefPubMed
4.
go back to reference Kraft B (2012) Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology 89:237–246CrossRefPubMed Kraft B (2012) Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology 89:237–246CrossRefPubMed
5.
go back to reference Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215CrossRefPubMed Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215CrossRefPubMed
6.
go back to reference Breivogel CS, Selley DE, Childers SR (1998) Cannabinoid receptor agonist efficacy for stimulating [s-35]gtp-gamma-s binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem 273(27):16865–16873CrossRefPubMed Breivogel CS, Selley DE, Childers SR (1998) Cannabinoid receptor agonist efficacy for stimulating [s-35]gtp-gamma-s binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem 273(27):16865–16873CrossRefPubMed
7.
go back to reference Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536CrossRefPubMed Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536CrossRefPubMed
8.
go back to reference Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA 111:E5007–E5015CrossRefPubMedPubMedCentral Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA 111:E5007–E5015CrossRefPubMedPubMedCentral
9.
go back to reference Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMed Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMed
10.
go back to reference Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202CrossRefPubMed Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202CrossRefPubMed
11.
go back to reference Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97CrossRefPubMed Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97CrossRefPubMed
12.
go back to reference Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778CrossRefPubMed Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778CrossRefPubMed
13.
go back to reference Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 16:705–718CrossRefPubMed Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 16:705–718CrossRefPubMed
14.
go back to reference Leweke FM, Mueller JK, Lange B, Rohleder C (2016) Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry 79:604–612CrossRefPubMed Leweke FM, Mueller JK, Lange B, Rohleder C (2016) Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry 79:604–612CrossRefPubMed
16.
go back to reference Katzman MA, Furtado M, Anand L (2016) Targeting the endocannabinoid system in psychiatric illness. J Clin Psychopharmacol 36:691–703CrossRefPubMed Katzman MA, Furtado M, Anand L (2016) Targeting the endocannabinoid system in psychiatric illness. J Clin Psychopharmacol 36:691–703CrossRefPubMed
17.
go back to reference Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F (2013) Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol Ther 138:18–37CrossRefPubMed Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F (2013) Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol Ther 138:18–37CrossRefPubMed
18.
go back to reference Serra G, Fratta W (2007) A possible role for the endocannabinoid system in the neurobiology of depression. Clin Pract Epidemiol Mental Health 3:25CrossRef Serra G, Fratta W (2007) A possible role for the endocannabinoid system in the neurobiology of depression. Clin Pract Epidemiol Mental Health 3:25CrossRef
19.
go back to reference Hill MN, Gorzalka BB (2009) Impairments in endocannabinoid signaling and depressive illness. JAMA 301:1165–1166CrossRefPubMed Hill MN, Gorzalka BB (2009) Impairments in endocannabinoid signaling and depressive illness. JAMA 301:1165–1166CrossRefPubMed
20.
go back to reference Crowe MS, Nass SR, Gabella KM, Kinsey SG (2014) The endocannabinoid system modulates stress, emotionality, and inflammation. Brain Behav Immun 42:1–5CrossRefPubMed Crowe MS, Nass SR, Gabella KM, Kinsey SG (2014) The endocannabinoid system modulates stress, emotionality, and inflammation. Brain Behav Immun 42:1–5CrossRefPubMed
21.
22.
go back to reference Smaga I, Bystrowska B, Gawlinski D, Przegalinski E, Filip M (2014) The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 12:462–474CrossRefPubMedPubMedCentral Smaga I, Bystrowska B, Gawlinski D, Przegalinski E, Filip M (2014) The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 12:462–474CrossRefPubMedPubMedCentral
23.
go back to reference Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuro Psychopharmacol Biol Psychiatry 35:1575–1585CrossRef Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuro Psychopharmacol Biol Psychiatry 35:1575–1585CrossRef
24.
go back to reference Smaga I, Bystrowska B, Gawlinski D, Pomierny B, Stankowicz P, Filip M (2014) Antidepressants and changes in concentration of endocannabinoids and n-acylethanolamines in rat brain structures. Neurotox Res 26:190–206CrossRefPubMedPubMedCentral Smaga I, Bystrowska B, Gawlinski D, Pomierny B, Stankowicz P, Filip M (2014) Antidepressants and changes in concentration of endocannabinoids and n-acylethanolamines in rat brain structures. Neurotox Res 26:190–206CrossRefPubMedPubMedCentral
25.
go back to reference Wamsteeker Cusulin JI, Senst L, Teskey GC, Bains JS (2014) Experience salience gates endocannabinoid signaling at hypothalamic synapses. J Neurosci 34:6177–6181CrossRefPubMed Wamsteeker Cusulin JI, Senst L, Teskey GC, Bains JS (2014) Experience salience gates endocannabinoid signaling at hypothalamic synapses. J Neurosci 34:6177–6181CrossRefPubMed
26.
go back to reference Hill MN, Barr AM, Ho WS, Carrier EJ, Gorzalka BB, Hillard CJ (2007) Electroconvulsive shock treatment differentially modulates cortical and subcortical endocannabinoid activity. J Neurochem 103:47–56CrossRefPubMed Hill MN, Barr AM, Ho WS, Carrier EJ, Gorzalka BB, Hillard CJ (2007) Electroconvulsive shock treatment differentially modulates cortical and subcortical endocannabinoid activity. J Neurochem 103:47–56CrossRefPubMed
27.
go back to reference Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkotter J, Piomelli D (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29:2108–2114CrossRefPubMed Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkotter J, Piomelli D (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29:2108–2114CrossRefPubMed
28.
go back to reference Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41:48–53CrossRefPubMedPubMedCentral Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41:48–53CrossRefPubMedPubMedCentral
29.
go back to reference Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and n-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34:1257–1262CrossRefPubMedPubMedCentral Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and n-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34:1257–1262CrossRefPubMedPubMedCentral
30.
go back to reference Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V (2004) Upregulation of CB1 receptors and agonist-stimulated [35s]gtpgammas binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190CrossRefPubMed Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V (2004) Upregulation of CB1 receptors and agonist-stimulated [35s]gtpgammas binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190CrossRefPubMed
31.
go back to reference Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, Schloss P, Sartorius A, Meyer-Lindenberg A, Gass P (2013) Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS One 8:e69869CrossRefPubMedPubMedCentral Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, Schloss P, Sartorius A, Meyer-Lindenberg A, Gass P (2013) Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS One 8:e69869CrossRefPubMedPubMedCentral
32.
go back to reference Rotheneichner P, Lange S, O’Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, Aigner L, Couillard-Despres S (2014) Hippocampal neurogenesis and antidepressive therapy: shocking relations. Neural Plast 2014:723915CrossRefPubMedPubMedCentral Rotheneichner P, Lange S, O’Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, Aigner L, Couillard-Despres S (2014) Hippocampal neurogenesis and antidepressive therapy: shocking relations. Neural Plast 2014:723915CrossRefPubMedPubMedCentral
33.
go back to reference Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P (2009) Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 42:270–276CrossRefPubMed Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P (2009) Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 42:270–276CrossRefPubMed
34.
go back to reference Lanzenberger R, Baldinger P, Hahn A, Ungersboeck J, Mitterhauser M, Winkler D, Micskei Z, Stein P, Karanikas G, Wadsak W, Kasper S, Frey R (2013) Global decrease of serotonin-1a receptor binding after electroconvulsive therapy in major depression measured by pet. Mol Psychiatry 18:93–100CrossRefPubMed Lanzenberger R, Baldinger P, Hahn A, Ungersboeck J, Mitterhauser M, Winkler D, Micskei Z, Stein P, Karanikas G, Wadsak W, Kasper S, Frey R (2013) Global decrease of serotonin-1a receptor binding after electroconvulsive therapy in major depression measured by pet. Mol Psychiatry 18:93–100CrossRefPubMed
35.
go back to reference Fosse R, Read J (2013) Electroconvulsive treatment: Hypotheses about mechanisms of action. Front Psychiatry (Frontiers Research Foundation) 4:94 Fosse R, Read J (2013) Electroconvulsive treatment: Hypotheses about mechanisms of action. Front Psychiatry (Frontiers Research Foundation) 4:94
36.
go back to reference Hoyer C, Kranaster L, Janke C, Sartorius A (2014) Impact of the anesthetic agents ketamine, etomidate, thiopental, and propofol on seizure parameters and seizure quality in electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 264:255–261CrossRefPubMed Hoyer C, Kranaster L, Janke C, Sartorius A (2014) Impact of the anesthetic agents ketamine, etomidate, thiopental, and propofol on seizure parameters and seizure quality in electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 264:255–261CrossRefPubMed
37.
go back to reference Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A (2011) Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 261:575–582CrossRefPubMed Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A (2011) Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 261:575–582CrossRefPubMed
38.
go back to reference American Psychiatric Association (2001) The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging (a task force report of the american psychiatric association). American Psychiatric Association, Washington American Psychiatric Association (2001) The practice of electroconvulsive therapy: recommendations for treatment, training, and privileging (a task force report of the american psychiatric association). American Psychiatric Association, Washington
39.
go back to reference Bindila L, Lutz B (2016) Extraction and simultaneous quantification of endocannabinoids and endocannabinoid-like lipids in biological tissues. Methods Mol Biol 1412:9–18CrossRefPubMed Bindila L, Lutz B (2016) Extraction and simultaneous quantification of endocannabinoids and endocannabinoid-like lipids in biological tissues. Methods Mol Biol 1412:9–18CrossRefPubMed
40.
go back to reference Sigel E, Baur R, Racz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011) The major central endocannabinoid directly acts at gaba(a) receptors. Proc Natl Acad Sci USA 108:18150–18155CrossRefPubMedPubMedCentral Sigel E, Baur R, Racz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011) The major central endocannabinoid directly acts at gaba(a) receptors. Proc Natl Acad Sci USA 108:18150–18155CrossRefPubMedPubMedCentral
41.
go back to reference Egertova M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and CB(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–496CrossRefPubMed Egertova M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and CB(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–496CrossRefPubMed
42.
go back to reference Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA (2016) Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology (Berl) 233:1591–1604CrossRef Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA (2016) Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology (Berl) 233:1591–1604CrossRef
Metadata
Title
Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: a preliminary prospective study
Authors
Laura Kranaster
Carolin Hoyer
Suna Su Aksay
Jan Malte Bumb
F. Markus Leweke
Christoph Janke
Manfred Thiel
Beat Lutz
Laura Bindila
Alexander Sartorius
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 8/2017
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-017-0789-7

Other articles of this Issue 8/2017

European Archives of Psychiatry and Clinical Neuroscience 8/2017 Go to the issue