Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 6/2016

01-09-2016 | Original Paper

Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm

Authors: M. M. Brzózka, M. J. Rossner, L. de Hoz

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 6/2016

Login to get access

Abstract

Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients.
Literature
3.
go back to reference Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10(1):27–39CrossRefPubMed Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10(1):27–39CrossRefPubMed
4.
go back to reference Gray NS, Pickering AD, Hemsley DR, Dawling S, Gray JA (1992) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology 107(2–3):425–430CrossRefPubMed Gray NS, Pickering AD, Hemsley DR, Dawling S, Gray JA (1992) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology 107(2–3):425–430CrossRefPubMed
5.
go back to reference Vaitl D, Lipp OV (1997) Latent inhibition and autonomic responses: a psychophysiological approach. Behav Brain Res 88(1):85–93CrossRefPubMed Vaitl D, Lipp OV (1997) Latent inhibition and autonomic responses: a psychophysiological approach. Behav Brain Res 88(1):85–93CrossRefPubMed
6.
go back to reference Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M et al (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51(2–3):149–161CrossRefPubMed Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M et al (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51(2–3):149–161CrossRefPubMed
7.
go back to reference Vaitl D, Lipp O, Bauer U, Schüler G, Stark R, Zimmermann M et al (2002) Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophr Res 55(1–2):147–158CrossRefPubMed Vaitl D, Lipp O, Bauer U, Schüler G, Stark R, Zimmermann M et al (2002) Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophr Res 55(1–2):147–158CrossRefPubMed
8.
go back to reference Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204(2):369–386CrossRefPubMed Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204(2):369–386CrossRefPubMed
9.
go back to reference Lubow RE, Moore AU (1959) Latent inhibition: the effect of nonreinforced pre-exposure to the conditional stimulus. J Comp Physiol Psychol. 52:415–419CrossRefPubMed Lubow RE, Moore AU (1959) Latent inhibition: the effect of nonreinforced pre-exposure to the conditional stimulus. J Comp Physiol Psychol. 52:415–419CrossRefPubMed
10.
go back to reference Meyer F, Louilot A (2014) Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 7:118CrossRefPubMed Meyer F, Louilot A (2014) Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 7:118CrossRefPubMed
11.
go back to reference Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33(2–3):275–307CrossRefPubMed Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33(2–3):275–307CrossRefPubMed
12.
go back to reference Weiner I (2003) The, “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169(3–4):257–297CrossRefPubMed Weiner I (2003) The, “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169(3–4):257–297CrossRefPubMed
13.
go back to reference Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200(2):217–230CrossRefPubMed Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200(2):217–230CrossRefPubMed
14.
go back to reference Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31(1):139–153CrossRefPubMed Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31(1):139–153CrossRefPubMed
15.
go back to reference Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117(1):87–103CrossRefPubMed Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117(1):87–103CrossRefPubMed
16.
go back to reference Weiner I, Schnabel I, Lubow RE, Feldon J (1985) The effects of early handling on latent inhibition in male and female rats. Dev Psychobiol 18(4):291–297CrossRefPubMed Weiner I, Schnabel I, Lubow RE, Feldon J (1985) The effects of early handling on latent inhibition in male and female rats. Dev Psychobiol 18(4):291–297CrossRefPubMed
17.
go back to reference Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer MA (1996) Latent inhibition in schizophrenia. Schizophr Res 20(1–2):91–103CrossRefPubMed Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer MA (1996) Latent inhibition in schizophrenia. Schizophr Res 20(1–2):91–103CrossRefPubMed
18.
go back to reference Williams JH, Wellman NA, Geaney DP, Cowen PJ, Feldon J, Rawlins JN (1998) Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br J Psychiatry J Ment Sci 172:243–249CrossRef Williams JH, Wellman NA, Geaney DP, Cowen PJ, Feldon J, Rawlins JN (1998) Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br J Psychiatry J Ment Sci 172:243–249CrossRef
20.
go back to reference Solomon PR, Crider A, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16(6):519–537PubMed Solomon PR, Crider A, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16(6):519–537PubMed
21.
go back to reference Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83(2):194–199CrossRefPubMed Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83(2):194–199CrossRefPubMed
22.
go back to reference Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30(4):871–878CrossRefPubMed Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30(4):871–878CrossRefPubMed
23.
go back to reference McGue M, Gottesman II (1991) The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 240(3):174–181CrossRefPubMed McGue M, Gottesman II (1991) The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 240(3):174–181CrossRefPubMed
24.
go back to reference Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747PubMedPubMedCentral Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747PubMedPubMedCentral
25.
go back to reference Li T, Li Z, Chen P, Zhao Q, Wang T, Huang K et al (2010) Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol Psychiatry 68(7):671–673CrossRefPubMed Li T, Li Z, Chen P, Zhao Q, Wang T, Huang K et al (2010) Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol Psychiatry 68(7):671–673CrossRefPubMed
26.
go back to reference Steinberg S, de Jong S, Irish Schizophrenia Genomics Consortium, Andreassen OA, Werge T, Børglum AD et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20(20):4076–4081CrossRefPubMedPubMedCentral Steinberg S, de Jong S, Irish Schizophrenia Genomics Consortium, Andreassen OA, Werge T, Børglum AD et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20(20):4076–4081CrossRefPubMedPubMedCentral
27.
go back to reference Schizophrenia Psychiatric Genome-Wide Association Study (2011) (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976CrossRef Schizophrenia Psychiatric Genome-Wide Association Study (2011) (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976CrossRef
28.
go back to reference Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72(8):620–628CrossRefPubMedCentral Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72(8):620–628CrossRefPubMedCentral
29.
go back to reference Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150–1159CrossRefPubMedPubMedCentral Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150–1159CrossRefPubMedPubMedCentral
30.
go back to reference Wirgenes KV, Sønderby IE, Haukvik UK, Mattingsdal M, Tesli M, Athanasiu L et al (2012) TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry 2:e112CrossRefPubMedPubMedCentral Wirgenes KV, Sønderby IE, Haukvik UK, Mattingsdal M, Tesli M, Athanasiu L et al (2012) TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry 2:e112CrossRefPubMedPubMedCentral
31.
go back to reference Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225CrossRefPubMedPubMedCentral Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225CrossRefPubMedPubMedCentral
32.
go back to reference Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TGM et al (2013) Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 47(9):1215–1221CrossRefPubMedPubMedCentral Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TGM et al (2013) Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 47(9):1215–1221CrossRefPubMedPubMedCentral
33.
go back to reference Umeda-Yano S, Hashimoto R, Yamamori H, Weickert CS, Yasuda Y, Ohi K et al (2014) Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia. Neurosci Lett 7(568):12–16CrossRef Umeda-Yano S, Hashimoto R, Yamamori H, Weickert CS, Yasuda Y, Ohi K et al (2014) Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia. Neurosci Lett 7(568):12–16CrossRef
34.
go back to reference Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N et al (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993CrossRefPubMedPubMedCentral Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N et al (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993CrossRefPubMedPubMedCentral
35.
go back to reference Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J et al (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am J Hum Genet 80(5):994–1001CrossRefPubMedPubMedCentral Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J et al (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am J Hum Genet 80(5):994–1001CrossRefPubMedPubMedCentral
36.
go back to reference de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N et al (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat 30(4):669–676CrossRefPubMed de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N et al (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat 30(4):669–676CrossRefPubMed
37.
go back to reference Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ (2012) Functional analysis of TCF4 missense mutations that cause Pitt–Hopkins syndrome. Hum Mutat 33(12):1676–1686CrossRefPubMed Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ (2012) Functional analysis of TCF4 missense mutations that cause Pitt–Hopkins syndrome. Hum Mutat 33(12):1676–1686CrossRefPubMed
39.
go back to reference Soosaar A, Chiaramello A, Zuber MX, Neuman T (1994) Expression of basic-helix-loop-helix transcription factor ME2 during brain development and in the regions of neuronal plasticity in the adult brain. Brain Res Mol Brain Res 25(1–2):176–180CrossRefPubMed Soosaar A, Chiaramello A, Zuber MX, Neuman T (1994) Expression of basic-helix-loop-helix transcription factor ME2 during brain development and in the regions of neuronal plasticity in the adult brain. Brain Res Mol Brain Res 25(1–2):176–180CrossRefPubMed
40.
go back to reference Chiaramello A, Soosaar A, Neuman T, Zuber MX (1995) Differential expression and distinct DNA-binding specificity of ME1a and ME2 suggest a unique role during differentiation and neuronal plasticity. Brain Res Mol Brain Res 29(1):107–118CrossRefPubMed Chiaramello A, Soosaar A, Neuman T, Zuber MX (1995) Differential expression and distinct DNA-binding specificity of ME1a and ME2 suggest a unique role during differentiation and neuronal plasticity. Brain Res Mol Brain Res 29(1):107–118CrossRefPubMed
41.
go back to reference Brzózka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68(1):33–40CrossRefPubMed Brzózka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68(1):33–40CrossRefPubMed
42.
go back to reference Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA 104(39):15382–15387CrossRefPubMedPubMedCentral Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA 104(39):15382–15387CrossRefPubMedPubMedCentral
43.
go back to reference Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 16(6):2898–2905CrossRefPubMedPubMedCentral Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 16(6):2898–2905CrossRefPubMedPubMedCentral
44.
45.
go back to reference Brzózka MM, Rossner MJ (2013) Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res 15(237):348–356CrossRef Brzózka MM, Rossner MJ (2013) Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res 15(237):348–356CrossRef
46.
go back to reference Quednow BB, Brzózka MM, Rossner MJ (2014) Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci CMLS 71(15):2815–2835CrossRefPubMed Quednow BB, Brzózka MM, Rossner MJ (2014) Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci CMLS 71(15):2815–2835CrossRefPubMed
47.
go back to reference Falkai P, Rossner MJ, Schulze TG, Hasan A, Brzózka MM, Malchow B et al (2015) Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry 20(6):671–676CrossRefPubMed Falkai P, Rossner MJ, Schulze TG, Hasan A, Brzózka MM, Malchow B et al (2015) Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry 20(6):671–676CrossRefPubMed
48.
50.
go back to reference Morice R (1990) Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry J Ment Sci 157:50–54CrossRef Morice R (1990) Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry J Ment Sci 157:50–54CrossRef
51.
go back to reference Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204(2):396–409CrossRefPubMed Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204(2):396–409CrossRefPubMed
52.
go back to reference Levin HS, Eisenberg HM, Benton AL (1991) Frontal lobe function and dysfunction. Oxford University Press, Oxford, p 458 Levin HS, Eisenberg HM, Benton AL (1991) Frontal lobe function and dysfunction. Oxford University Press, Oxford, p 458
54.
go back to reference Schiller D, Weiner I (2004) Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience 128(1):15–25CrossRefPubMed Schiller D, Weiner I (2004) Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience 128(1):15–25CrossRefPubMed
55.
go back to reference Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology 122(1):35–43CrossRefPubMed Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology 122(1):35–43CrossRefPubMed
56.
go back to reference Grecksch G, Bernstein HG, Becker A, Höllt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 20(6):525–532CrossRef Grecksch G, Bernstein HG, Becker A, Höllt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 20(6):525–532CrossRef
57.
go back to reference Feldon J, Avnimelech-Gigus N, Weiner I (1990) The effects of pre- and post-weaning rearing conditions on latent inhibition and partial reinforcement extinction effect in male rats. Behav Neural Biol 53(2):189–204CrossRefPubMed Feldon J, Avnimelech-Gigus N, Weiner I (1990) The effects of pre- and post-weaning rearing conditions on latent inhibition and partial reinforcement extinction effect in male rats. Behav Neural Biol 53(2):189–204CrossRefPubMed
58.
go back to reference Shalev U, Feldon J, Weiner I (1998) Gender- and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci Off J Int Soc Dev Neurosci 16(3–4):279–288CrossRef Shalev U, Feldon J, Weiner I (1998) Gender- and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci Off J Int Soc Dev Neurosci 16(3–4):279–288CrossRef
59.
go back to reference Bethus I, Lemaire V, Lhomme M, Goodall G (2005) Does prenatal stress affect latent inhibition? It depends on the gender. Behav Brain Res 158(2):331–338CrossRefPubMed Bethus I, Lemaire V, Lhomme M, Goodall G (2005) Does prenatal stress affect latent inhibition? It depends on the gender. Behav Brain Res 158(2):331–338CrossRefPubMed
60.
go back to reference Quinlan MG, Duncan A, Loiselle C, Graffe N, Brake WG (2010) Latent inhibition is affected by phase of estrous cycle in female rats. Brain Cogn 74(3):244–248CrossRefPubMed Quinlan MG, Duncan A, Loiselle C, Graffe N, Brake WG (2010) Latent inhibition is affected by phase of estrous cycle in female rats. Brain Cogn 74(3):244–248CrossRefPubMed
Metadata
Title
Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm
Authors
M. M. Brzózka
M. J. Rossner
L. de Hoz
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 6/2016
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-015-0643-8

Other articles of this Issue 6/2016

European Archives of Psychiatry and Clinical Neuroscience 6/2016 Go to the issue