Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 1/2019

01-01-2019 | Rhinology

Molecular interactions in juvenile nasopharyngeal angiofibroma: preliminary signature and relevant review

Authors: Anupam Mishra, Riddhi Jaiswal, Pandey Amita, S. C. Mishra

Published in: European Archives of Oto-Rhino-Laryngology | Issue 1/2019

Login to get access

Abstract

Background

The molecular profile of juvenile nasopharyngeal angiofibroma (JNA) is extremely variable. In absence of established molecular signature the molecular targeting seems difficult for this heterogeneous disease. To establish a basic molecular signature, this paper analyses the interaction of 7 markers according to their ranks as per the decreasing scale of molecular expression.

Materials and methods

Fourteen samples of JNA were obtained following surgical excision and mRNA expressions were established through real-time polymerase chain reaction (RT-PCR) for vasculoendothelial growth factor (VEGF), fibroblastic growth factor (FGF), c-Kit, c-myc, Ras, platelet-derived growth factor (PDGF) and tumor suppressor gene p53. Nasal polyp was taken as control. The quantitative expressions for every marker were ranked on a decreasing scale and were compared by Spearman’s rank correlation test to define the statistically significant interaction. An attempt was also made to overview the basic clinical parameters (age, duration of symptoms, radiological staging, intraoperative haemorrhage and tumor-volume/weight) associated with enhanced molecular expressions for every marker. Results: Five significant molecular interactions were identified on the basis of rank-correlation: (1) FGF/VEGF (p < 0.01); (2) Ras/FGF (p < 0.01); (3) Ras/VEGF (p < 0.001), (4) FGF/c-Kit (p < 0.05); (5) c-Myc/p53 (p < 0.05). These basic ‘molecular signatures’ suggested a preliminary ‘molecular classification’. The implication of the interactions between FGF, VEGF and Ras were the most outstanding observation that not only revealed a direct relationship but were also consistent with the clinical behaviour. In addition, a non-significant interaction was identified with c-Myc/PDGF and also an inverse relationship between FGF/c-Kit.

Conclusions

FGF, VEGF, and Ras being significantly interrelated seemed to be the ‘most soft’ molecular targets for JNA. The other targets observed included FGF/c-Kit and c-Myc/p53 interactions that seemed equally important but only after VEGF/FGF/Ras complex per se. These preliminary signatures are likely to provide a background for further expansion of the molecular classification of JNA.
Literature
2.
go back to reference Mishra A, Mishra SC, Pandey A (2017) Variations in molecular expressions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 131(9):752–759CrossRefPubMed Mishra A, Mishra SC, Pandey A (2017) Variations in molecular expressions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 131(9):752–759CrossRefPubMed
3.
go back to reference Mishra A, Mishra SC, Verma V, Singh HP, Kumar S, Tripathi AM, Patel B, Singh V (2016) In defence of transpalatal, transpalatal-circumaxillary (transpterygopalatine) and transpalatal-circumaxillary-sublabial approaches to lateral extensions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 130(5):462–473. https://doi.org/10.1017/S0022215116000773 CrossRefPubMed Mishra A, Mishra SC, Verma V, Singh HP, Kumar S, Tripathi AM, Patel B, Singh V (2016) In defence of transpalatal, transpalatal-circumaxillary (transpterygopalatine) and transpalatal-circumaxillary-sublabial approaches to lateral extensions of juvenile nasopharyngeal angiofibroma. J Laryngol Otol 130(5):462–473. https://​doi.​org/​10.​1017/​S002221511600077​3 CrossRefPubMed
5.
go back to reference Mishra A, Sachadeva M, Jain A, Mishra Shukla N, Pandey A (2016) Human Papilloma virus in Juvenile Nasopharyngeal Angiofibroma: possible recent trend. Am J Otolaryngol Head Neck Med Surg 37:317–322 Mishra A, Sachadeva M, Jain A, Mishra Shukla N, Pandey A (2016) Human Papilloma virus in Juvenile Nasopharyngeal Angiofibroma: possible recent trend. Am J Otolaryngol Head Neck Med Surg 37:317–322
7.
go back to reference Schuon R, Brieger J, Heinrich UR, Roth Y, Szyfter W, Mann WJ (2007) Immunohistochemical analysis of growth mechanisms in juvenile angiofibroma. Eur Arch Otorhinolaryngol 264:389–394CrossRefPubMed Schuon R, Brieger J, Heinrich UR, Roth Y, Szyfter W, Mann WJ (2007) Immunohistochemical analysis of growth mechanisms in juvenile angiofibroma. Eur Arch Otorhinolaryngol 264:389–394CrossRefPubMed
8.
go back to reference Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17:2667–2674CrossRef Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17:2667–2674CrossRef
9.
go back to reference Thomas KA, Rios-Candelore M, Gimenez-Gallego G, DiSalvo J, Bennett C, Rodkey J, Fitzpatrick S (1985) Pure brain-derived acidic Fibroblast Growth Factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 82:6409–6413CrossRefPubMedPubMedCentral Thomas KA, Rios-Candelore M, Gimenez-Gallego G, DiSalvo J, Bennett C, Rodkey J, Fitzpatrick S (1985) Pure brain-derived acidic Fibroblast Growth Factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 82:6409–6413CrossRefPubMedPubMedCentral
10.
go back to reference Schiff M, Gonzalez A, Ong M, Baird A (1992) Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF. Laryngoscope 102:940–945CrossRefPubMed Schiff M, Gonzalez A, Ong M, Baird A (1992) Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF. Laryngoscope 102:940–945CrossRefPubMed
11.
go back to reference Narasimhan P (2009) VEGF stimulates the ERK 1/2 signalling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473CrossRefPubMedPubMedCentral Narasimhan P (2009) VEGF stimulates the ERK 1/2 signalling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473CrossRefPubMedPubMedCentral
12.
go back to reference Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC (2004) Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 24(2):294–300 (Epub 2003 Dec 1) CrossRefPubMed Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC (2004) Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 24(2):294–300 (Epub 2003 Dec 1) CrossRefPubMed
13.
go back to reference Shiojima I, Walsh K (2002) Role of Akt signalling in vascular homeostasis and angiogenesis. Circ Res 90(12):1243–1250CrossRefPubMed Shiojima I, Walsh K (2002) Role of Akt signalling in vascular homeostasis and angiogenesis. Circ Res 90(12):1243–1250CrossRefPubMed
14.
go back to reference Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178CrossRefPubMed Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178CrossRefPubMed
15.
go back to reference Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831CrossRefPubMed Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831CrossRefPubMed
16.
go back to reference Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS (2001) Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299:1073–1085PubMed Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS (2001) Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299:1073–1085PubMed
17.
go back to reference Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R, Tosatti MP, Presta M (2003) Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol 162:1913–1926CrossRefPubMedPubMedCentral Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R, Tosatti MP, Presta M (2003) Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol 162:1913–1926CrossRefPubMedPubMedCentral
18.
go back to reference Shi YH, Bingle L, Gong LH, Wang YX, Corke KP, Fang WG (2007) Basic FGF augments hypoxia induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells. Pathology 39:396–400CrossRefPubMed Shi YH, Bingle L, Gong LH, Wang YX, Corke KP, Fang WG (2007) Basic FGF augments hypoxia induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells. Pathology 39:396–400CrossRefPubMed
19.
go back to reference Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentral Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentral
21.
23.
go back to reference Coutinho CM, Bassini AS, Gutie´rrez LG et al (1999) Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer. Sao Paulo Med J 117:113–120CrossRefPubMed Coutinho CM, Bassini AS, Gutie´rrez LG et al (1999) Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer. Sao Paulo Med J 117:113–120CrossRefPubMed
24.
go back to reference Breieri G, Blumi S, Peli J, Grooti M, Wild C, Risau W, Richmann E (2002) Transforming growth factor-b and Ras regulate the VEGF/VRGF receptor system during tumour angiogenesis. Int J Cancer 97:142–148CrossRef Breieri G, Blumi S, Peli J, Grooti M, Wild C, Risau W, Richmann E (2002) Transforming growth factor-b and Ras regulate the VEGF/VRGF receptor system during tumour angiogenesis. Int J Cancer 97:142–148CrossRef
25.
go back to reference Jones MK, Itani RM, Wang H, Tomikawa M, Sarfeh IJ, Szabo S, Tarnawski AS (1999) Activation of VEGF and Ras genes in gastric mucosa during angiogenic response to ethanol injury. Am J Physiol 276(6 Pt 1):G1345–G1355PubMed Jones MK, Itani RM, Wang H, Tomikawa M, Sarfeh IJ, Szabo S, Tarnawski AS (1999) Activation of VEGF and Ras genes in gastric mucosa during angiogenic response to ethanol injury. Am J Physiol 276(6 Pt 1):G1345–G1355PubMed
26.
go back to reference Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276(52):49289–49298CrossRefPubMed Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276(52):49289–49298CrossRefPubMed
27.
go back to reference Yamada S, Yoshimura A (2002) Computer modeling of Ras-MAPK signal transduction pathway. Genome Inform 13:361–362 Yamada S, Yoshimura A (2002) Computer modeling of Ras-MAPK signal transduction pathway. Genome Inform 13:361–362
28.
go back to reference Klint P, Kanda S, Kloog Y, Claesson-Welsh L (1999) Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 18:3354–3364CrossRefPubMed Klint P, Kanda S, Kloog Y, Claesson-Welsh L (1999) Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 18:3354–3364CrossRefPubMed
29.
go back to reference Yan D, Ellman MB, Muddasani P, Cs-Szabo G, Im HJ (2012) FGF-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis and PKCd pathway in articular chondrocytes. Poster No. 1718 • ORS 2012 Annual Meeting Yan D, Ellman MB, Muddasani P, Cs-Szabo G, Im HJ (2012) FGF-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis and PKCd pathway in articular chondrocytes. Poster No. 1718 • ORS 2012 Annual Meeting
32.
go back to reference Nagai MA, Butugan O, Logullo A, Brentani MM (1996) Expression of growth factors, protooncogenes and p53 in nasopharyngeal angiofibromas. Laryngoscope 106:190–195CrossRefPubMed Nagai MA, Butugan O, Logullo A, Brentani MM (1996) Expression of growth factors, protooncogenes and p53 in nasopharyngeal angiofibromas. Laryngoscope 106:190–195CrossRefPubMed
33.
go back to reference Schick B, Veldung B, Wemmert S, Jung V, Montenarh M, Meese E, Urbschat S (2005) p53 and Her-2/neu in juvenile angiofibromas. Oncol Rep 13:453–457PubMed Schick B, Veldung B, Wemmert S, Jung V, Montenarh M, Meese E, Urbschat S (2005) p53 and Her-2/neu in juvenile angiofibromas. Oncol Rep 13:453–457PubMed
34.
go back to reference Ho JSL, Ma W, Mao DYL, Benchimol S (2005) p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431CrossRefPubMedPubMedCentral Ho JSL, Ma W, Mao DYL, Benchimol S (2005) p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431CrossRefPubMedPubMedCentral
35.
go back to reference Symonds HL. Krall L, Remington M, Saenz-Robles S, Lowe T, Jacks, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711CrossRefPubMed Symonds HL. Krall L, Remington M, Saenz-Robles S, Lowe T, Jacks, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711CrossRefPubMed
36.
go back to reference Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ (1997) Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol Cell Biol 17:723–731CrossRefPubMedPubMedCentral Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ (1997) Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol Cell Biol 17:723–731CrossRefPubMedPubMedCentral
37.
go back to reference Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARFMdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669CrossRefPubMedPubMedCentral Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARFMdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669CrossRefPubMedPubMedCentral
40.
go back to reference Zhang PJ, Weber R, Liang H, Pasha TL, LiVolsi VA (2003) Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps. Arch Pathol Lab Med 127:1480–1484PubMed Zhang PJ, Weber R, Liang H, Pasha TL, LiVolsi VA (2003) Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps. Arch Pathol Lab Med 127:1480–1484PubMed
42.
go back to reference Koritschoner NP, Bartunek P, Knespel S, Blendinger G, Zenke M (1999) The Fibroblast growth factor receptor FGFR-4 acts as a ligand dependent modulator of erythroid cell proliferation. Oncogene 18:5904–5914CrossRefPubMed Koritschoner NP, Bartunek P, Knespel S, Blendinger G, Zenke M (1999) The Fibroblast growth factor receptor FGFR-4 acts as a ligand dependent modulator of erythroid cell proliferation. Oncogene 18:5904–5914CrossRefPubMed
43.
go back to reference Burger PE, Lukey PT, Coetzee S, Wilson EL (2002) Basic fibroblast growth factor modulates the expression of glycophorin A and c-kit and inhibits erythroid differentiation in K562 Cells. J Cell Physiol 190:83–91CrossRefPubMed Burger PE, Lukey PT, Coetzee S, Wilson EL (2002) Basic fibroblast growth factor modulates the expression of glycophorin A and c-kit and inhibits erythroid differentiation in K562 Cells. J Cell Physiol 190:83–91CrossRefPubMed
45.
go back to reference Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L (2001) Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 21:2144–2153CrossRefPubMedPubMedCentral Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L (2001) Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 21:2144–2153CrossRefPubMedPubMedCentral
Metadata
Title
Molecular interactions in juvenile nasopharyngeal angiofibroma: preliminary signature and relevant review
Authors
Anupam Mishra
Riddhi Jaiswal
Pandey Amita
S. C. Mishra
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 1/2019
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-018-5178-y

Other articles of this Issue 1/2019

European Archives of Oto-Rhino-Laryngology 1/2019 Go to the issue