Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 10/2017

Open Access 01-10-2017 | Otology

Whole-exome sequencing to identify the cause of congenital sensorineural hearing loss in carriers of a heterozygous GJB2 mutation

Authors: Thomas Parzefall, Alexandra Frohne, Martin Koenighofer, Andreas Kirchnawy, Berthold Streubel, Christian Schoefer, Klemens Frei, Trevor Lucas

Published in: European Archives of Oto-Rhino-Laryngology | Issue 10/2017

Login to get access

Abstract

Bi-allelic variations in the gap junction protein beta-2 (GJB2) gene cause up to 50% of cases of newborn hearing loss. Heterozygous pathogenic GJB2 variations are also fivefold overrepresented in idiopathic patient groups compared to the normal-hearing population. Whether hearing loss in this group is due to unidentified additional variations within GJB2 or variations in other deafness genes is unknown in most cases. Whole-exome sequencing offers an effective approach in the search for causative variations in patients with Mendelian diseases. In this prospective genetic cohort study, we initially investigated a family of Turkish origin suffering from congenital autosomal recessive hearing loss. An index patient and his normal-hearing father, both bearing a single heterozygous pathogenic c.262G>T (p.Ala88Ser) GJB2 transversion as well as the normal-hearing mother were investigated by means of whole-exome sequencing. Subsequently the genetic screening was extended to a hearing-impaired cohort of 24 families of Turkish origin. A homozygous missense c.5492G>T transversion (p.Gly1831Val) in the Myosin 15a gene, previously linked to deafness, was identified as causative in the index family. This very rare variant is not listed in any population in the Genome Aggregation Database. Subsequent screening of index patients from additional families of Turkish origin with recessive hearing loss identified the c.5492G>T variation in an additional family. Whole-exome sequencing may effectively identify the causes of idiopathic hearing loss in patients bearing heterozygous GJB2 variations.
Literature
2.
go back to reference Morton CC, Nance WE (2006) Newborn hearing screening–a silent revolution. N Engl J Med 354:2151–2164CrossRefPubMed Morton CC, Nance WE (2006) Newborn hearing screening–a silent revolution. N Engl J Med 354:2151–2164CrossRefPubMed
3.
go back to reference Smith RJH, Shearer AE, Hildebrand MS, Van Camp G (1993–2016) Deafness and hereditary hearing loss overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH et al (eds) GeneReviews, Seattle (WA) Smith RJH, Shearer AE, Hildebrand MS, Van Camp G (1993–2016) Deafness and hereditary hearing loss overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH et al (eds) GeneReviews, Seattle (WA)
4.
go back to reference Wingard JC, Zhao HB (2015) Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss—a common hereditary deafness. Front Cell Neurosci 9:202CrossRefPubMedPubMedCentral Wingard JC, Zhao HB (2015) Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss—a common hereditary deafness. Front Cell Neurosci 9:202CrossRefPubMedPubMedCentral
5.
go back to reference Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83CrossRefPubMed Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83CrossRefPubMed
6.
go back to reference Frei K, Ramsebner R, Lucas T, Hamader G, Szuhai K, Weipoltshammer K et al (2005) GJB2 mutations in hearing impairment: identification of a broad clinical spectrum for improved genetic counseling. Laryngoscope 115:461–465CrossRefPubMed Frei K, Ramsebner R, Lucas T, Hamader G, Szuhai K, Weipoltshammer K et al (2005) GJB2 mutations in hearing impairment: identification of a broad clinical spectrum for improved genetic counseling. Laryngoscope 115:461–465CrossRefPubMed
7.
go back to reference Wolf A, Frohne A, Allen M, Parzefall T, Koenighofer M, Schreiner MM et al (2017) A novel mutation in SLC26A4 causes nonsyndromic autosomal recessive hearing impairment. Otol Neurotol 38(2):173–179CrossRefPubMed Wolf A, Frohne A, Allen M, Parzefall T, Koenighofer M, Schreiner MM et al (2017) A novel mutation in SLC26A4 causes nonsyndromic autosomal recessive hearing impairment. Otol Neurotol 38(2):173–179CrossRefPubMed
8.
go back to reference Frei K, Szuhai K, Lucas T, Weipoltshammer K, Schofer C, Ramsebner R et al (2002) Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. Eur J Hum Genet 10:427–432CrossRefPubMed Frei K, Szuhai K, Lucas T, Weipoltshammer K, Schofer C, Ramsebner R et al (2002) Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. Eur J Hum Genet 10:427–432CrossRefPubMed
9.
go back to reference Ramsebner R, Ludwig M, Lucas T, de Jong D, Hamader G, del Castillo I et al (2013) Identification of a SNP in a regulatory region of GJB2 associated with idiopathic nonsyndromic autosomal recessive hearing loss in a multicenter study. Otol Neurotol 34:650–656CrossRefPubMed Ramsebner R, Ludwig M, Lucas T, de Jong D, Hamader G, del Castillo I et al (2013) Identification of a SNP in a regulatory region of GJB2 associated with idiopathic nonsyndromic autosomal recessive hearing loss in a multicenter study. Otol Neurotol 34:650–656CrossRefPubMed
10.
go back to reference Koenighofer M, Lucas T, Parzefall T, Ramsebner R, Schoefer C, Frei K (2015) The promoter mutation c.-259C>T (-3438C>T) is not a common cause of non-syndromic hearing impairment in Austria. Eur Arch Otorhinolaryngol 272:229–232CrossRefPubMed Koenighofer M, Lucas T, Parzefall T, Ramsebner R, Schoefer C, Frei K (2015) The promoter mutation c.-259C>T (-3438C>T) is not a common cause of non-syndromic hearing impairment in Austria. Eur Arch Otorhinolaryngol 272:229–232CrossRefPubMed
11.
go back to reference Parzefall T, Lucas T, Koenighofer M, Ramsebner R, Frohne A, Czeiger S et al (2017) The role of alternative GJB2 transcription in screening for neonatal sensorineural deafness in Austria. Acta Otolaryngol 137(4):356–360CrossRefPubMed Parzefall T, Lucas T, Koenighofer M, Ramsebner R, Frohne A, Czeiger S et al (2017) The role of alternative GJB2 transcription in screening for neonatal sensorineural deafness in Austria. Acta Otolaryngol 137(4):356–360CrossRefPubMed
12.
go back to reference Frei K, Ramsebner R, Lucas T, Baumgartner WD, Schoefer C, Wachtler FJ et al (2004) Screening for monogenetic del(GJB6-D13S1830) and digenic del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from Eastern Austria. Hear Res 196:115–118CrossRefPubMed Frei K, Ramsebner R, Lucas T, Baumgartner WD, Schoefer C, Wachtler FJ et al (2004) Screening for monogenetic del(GJB6-D13S1830) and digenic del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from Eastern Austria. Hear Res 196:115–118CrossRefPubMed
13.
go back to reference Van Camp G, Smith RJH (2016) Hereditary hearing loss homepage. hereditaryhearingloss.org Van Camp G, Smith RJH (2016) Hereditary hearing loss homepage. hereditaryhearingloss.org
14.
go back to reference Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ, Brownstein Z, Marlin S, Adina Q et al (2003) Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73:1452–1458CrossRefPubMedPubMedCentral Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ, Brownstein Z, Marlin S, Adina Q et al (2003) Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73:1452–1458CrossRefPubMedPubMedCentral
15.
go back to reference Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J 2nd, Scherer S et al (2010) Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA 107:21104–21109CrossRefPubMedPubMedCentral Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J 2nd, Scherer S et al (2010) Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA 107:21104–21109CrossRefPubMedPubMedCentral
16.
go back to reference Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA et al (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502–1511CrossRefPubMedPubMedCentral Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA et al (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502–1511CrossRefPubMedPubMedCentral
17.
go back to reference Stephens D (1996) EU Working Group on Genetics of Hearing Impairment, European Commission Directorate, Biomedical and Health Research Programme Hereditary Deafness, Epidemiology and Clinical Research (HEAR). EU Work Group, pp 8–9 Stephens D (1996) EU Working Group on Genetics of Hearing Impairment, European Commission Directorate, Biomedical and Health Research Programme Hereditary Deafness, Epidemiology and Clinical Research (HEAR). EU Work Group, pp 8–9
19.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefPubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefPubMedPubMedCentral
20.
go back to reference Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRefPubMedPubMedCentral Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRefPubMedPubMedCentral
21.
go back to reference Kalay E, Uzumcu A, Krieger E, Caylan R, Uyguner O, Ulubil-Emiroglu M et al (2007) MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation. Am J Med Genet A 143A:2382–2389CrossRefPubMed Kalay E, Uzumcu A, Krieger E, Caylan R, Uyguner O, Ulubil-Emiroglu M et al (2007) MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation. Am J Med Genet A 143A:2382–2389CrossRefPubMed
22.
go back to reference del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249CrossRefPubMed del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249CrossRefPubMed
23.
go back to reference Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM et al (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7:148–156CrossRefPubMed Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM et al (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7:148–156CrossRefPubMed
24.
go back to reference Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD et al (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61:243–258CrossRefPubMed Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD et al (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61:243–258CrossRefPubMed
25.
go back to reference Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963CrossRefPubMedPubMedCentral Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963CrossRefPubMedPubMedCentral
26.
go back to reference Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM et al (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738CrossRefPubMed Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM et al (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738CrossRefPubMed
27.
go back to reference Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y et al (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447CrossRefPubMed Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y et al (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447CrossRefPubMed
28.
go back to reference Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW et al (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451CrossRefPubMed Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW et al (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451CrossRefPubMed
29.
go back to reference Rehman AU, Bird JE, Faridi R, Shahzad M, Shah S, Lee K et al (2016) Mutational spectrum of MYO15A and the molecular mechanisms of DFNB3 human deafness. Hum Mutat 37:991–1003CrossRefPubMed Rehman AU, Bird JE, Faridi R, Shahzad M, Shah S, Lee K et al (2016) Mutational spectrum of MYO15A and the molecular mechanisms of DFNB3 human deafness. Hum Mutat 37:991–1003CrossRefPubMed
Metadata
Title
Whole-exome sequencing to identify the cause of congenital sensorineural hearing loss in carriers of a heterozygous GJB2 mutation
Authors
Thomas Parzefall
Alexandra Frohne
Martin Koenighofer
Andreas Kirchnawy
Berthold Streubel
Christian Schoefer
Klemens Frei
Trevor Lucas
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Oto-Rhino-Laryngology / Issue 10/2017
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-017-4699-0

Other articles of this Issue 10/2017

European Archives of Oto-Rhino-Laryngology 10/2017 Go to the issue