Skip to main content
Top
Published in: Archives of Gynecology and Obstetrics 6/2018

Open Access 01-12-2018 | General Gynecology

rHGF interacts with rIGF-1 to activate the satellite cells in the striated urethral sphincter in rats: a promising treatment for urinary incontinence?

Authors: Xijie Gu, Lailai Fan, Runjiang Ke, Yinghe Chen

Published in: Archives of Gynecology and Obstetrics | Issue 6/2018

Login to get access

Abstract

Purpose

There are multitudes of factors contributing to urinary incontinence (UI). Dysfunction of the urethral sphincter is one of the common variables. Fortunately, satellite cells, which have the characteristics of stem cells, exist in the striated urethral sphincter. The purpose of the study was to seek whether rHGF combined with rIGF-1 owns the ability to promote the activation, proliferation, and differentiation of satellite cells to potentially improve urinary incontinence.

Methods

The SD rats were randomly divided into four groups and injected with 10 μl rIGF-1, the concentration of which was 50 μg/ml into the urethral wall of the urethral sphincter. Meanwhile, three groups were additionally treated with 10 μl rHGF, the concentration of which was 20, 50, 100 μg/ml. The group injected only with rIGF-1 was used as a control. 30 days later, the urethral tissues were harvested and serially sectioned. Immunofluorescent staining and HE staining were used to detect the activation, proliferation, and differentiation condition of satellite cells. The real-time RT-PCR analysis was applied to explore the potential signaling pathways.

Result

Anti-c-Met antibody-positive cells were discovered in the striated urethral sphincter. Positive expression of c-Met was relatively higher with the treatment of 100 μg/ml rHGF compared to other concentration of rHGF. A similar result was found in additional immunofluorescent staining. The number of newborn myofibers with central nuclei increased as the concentration of rHGF becoming higher. The mRNA expression of ERK1, ERK2 and AKT was comparatively higher with the injection of 50 μg/ml rHGF.

Conclusion

There is supposed to be a synergistic effect between rHGF and rIGF-1 to promote satellite cell to activate, proliferate and differentiate into muscle cells. The urethral sphincter may be induced to renew by the injection of rHGF and rIGF-1 into the urethral wall. It can be used to develop a new therapy for UI.
Literature
2.
go back to reference Boyle P, Robertson C, Mazzetta C, Keech M, Hobbs FD, Fourcade R, Kiemeney L, Lee C, UrEpik Study G (2003) The prevalence of male urinary incontinence in four centres: the UREPIK study. BJU Int 92(9):943–947CrossRef Boyle P, Robertson C, Mazzetta C, Keech M, Hobbs FD, Fourcade R, Kiemeney L, Lee C, UrEpik Study G (2003) The prevalence of male urinary incontinence in four centres: the UREPIK study. BJU Int 92(9):943–947CrossRef
16.
go back to reference Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95(26):15603–15607CrossRef Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95(26):15603–15607CrossRef
19.
go back to reference Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270(20):12109–12116CrossRef Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270(20):12109–12116CrossRef
24.
go back to reference LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111(4):589–601CrossRef LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111(4):589–601CrossRef
Metadata
Title
rHGF interacts with rIGF-1 to activate the satellite cells in the striated urethral sphincter in rats: a promising treatment for urinary incontinence?
Authors
Xijie Gu
Lailai Fan
Runjiang Ke
Yinghe Chen
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Archives of Gynecology and Obstetrics / Issue 6/2018
Print ISSN: 0932-0067
Electronic ISSN: 1432-0711
DOI
https://doi.org/10.1007/s00404-018-4930-2

Other articles of this Issue 6/2018

Archives of Gynecology and Obstetrics 6/2018 Go to the issue