Skip to main content
Top
Published in: Archives of Dermatological Research 7/2013

01-09-2013 | Review Article

Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing

Authors: J. Moura, L. da Silva, M. T. Cruz, E. Carvalho

Published in: Archives of Dermatological Research | Issue 7/2013

Login to get access

Abstract

Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.
Literature
1.
go back to reference Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G, Schultz GS (2008) The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 5(4):530–539PubMedCrossRef Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G, Schultz GS (2008) The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 5(4):530–539PubMedCrossRef
2.
go back to reference Ai X, Cappuzzello J, Hall AK (1999) Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 14(6):506–518PubMedCrossRef Ai X, Cappuzzello J, Hall AK (1999) Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 14(6):506–518PubMedCrossRef
3.
go back to reference Al-Wahbi AM (2010) Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 6:923–934PubMedCrossRef Al-Wahbi AM (2010) Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 6:923–934PubMedCrossRef
4.
go back to reference Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S (2010) BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 298(3):G375–G383PubMedCrossRef Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S (2010) BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 298(3):G375–G383PubMedCrossRef
5.
go back to reference Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, Matzuk MM, Werner S, Kogel H (2009) Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 89(2):131–141PubMedCrossRef Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, Matzuk MM, Werner S, Kogel H (2009) Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 89(2):131–141PubMedCrossRef
6.
go back to reference Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRef Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRef
7.
go back to reference Au K, Ehrlich HP (2010) When the Smad signaling pathway is impaired, fibroblasts advance open wound contraction. Exp Mol Pathol 89(3):236–240PubMedCrossRef Au K, Ehrlich HP (2010) When the Smad signaling pathway is impaired, fibroblasts advance open wound contraction. Exp Mol Pathol 89(3):236–240PubMedCrossRef
8.
go back to reference Bamberger C, Scharer A, Antsiferova M, Tychsen B, Pankow S, Muller M, Rulicke T, Paus R, Werner S (2005) Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am J Pathol 167(3):733–747PubMedCrossRef Bamberger C, Scharer A, Antsiferova M, Tychsen B, Pankow S, Muller M, Rulicke T, Paus R, Werner S (2005) Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am J Pathol 167(3):733–747PubMedCrossRef
9.
go back to reference Bandyopadhyay A, Yadav PS, Prashar P (2013) BMP signaling in development and diseases: A pharmacological perspective. Biochem Pharmacol 85(7):857–864PubMedCrossRef Bandyopadhyay A, Yadav PS, Prashar P (2013) BMP signaling in development and diseases: A pharmacological perspective. Biochem Pharmacol 85(7):857–864PubMedCrossRef
10.
go back to reference Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 5(1):34–39PubMedCrossRef Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 5(1):34–39PubMedCrossRef
11.
go back to reference Berlanga-Acosta J (2011) Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 8(6):612–620PubMedCrossRef Berlanga-Acosta J (2011) Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 8(6):612–620PubMedCrossRef
12.
go back to reference Bogdanski P, Pupek-Musialik D, Dytfeld J, Jagodzinski PP, Jablecka A, Kujawa A, Musialik K (2007) Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45(10):563–567PubMed Bogdanski P, Pupek-Musialik D, Dytfeld J, Jagodzinski PP, Jablecka A, Kujawa A, Musialik K (2007) Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45(10):563–567PubMed
13.
go back to reference Botchkarev VA (2003) Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol 120(1):36–47PubMedCrossRef Botchkarev VA (2003) Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol 120(1):36–47PubMedCrossRef
14.
go back to reference Botchkarev VA, Sharov AA (2004) BMP signaling in the control of skin development and hair follicle growth. Differ Res Biol Divers 72(9–10):512–526CrossRef Botchkarev VA, Sharov AA (2004) BMP signaling in the control of skin development and hair follicle growth. Differ Res Biol Divers 72(9–10):512–526CrossRef
15.
go back to reference Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol 18(2):119–127PubMed Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol 18(2):119–127PubMed
16.
go back to reference Bressan M, Davis P, Timmer J, Herzlinger D, Mikawa T (2009) Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol 326(1):101–111PubMedCrossRef Bressan M, Davis P, Timmer J, Herzlinger D, Mikawa T (2009) Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol 326(1):101–111PubMedCrossRef
17.
go back to reference Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402CrossRef Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402CrossRef
18.
go back to reference Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823PubMedCrossRef Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823PubMedCrossRef
19.
go back to reference Cruise BA, Xu P, Hall AK (2004) Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol 271(1):1–10PubMedCrossRef Cruise BA, Xu P, Hall AK (2004) Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol 271(1):1–10PubMedCrossRef
20.
go back to reference Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100PubMedCrossRef Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100PubMedCrossRef
22.
go back to reference Dani C (2013) Activins in adipogenesis and obesity. Int J Obes (Lond) 37(2):163–166CrossRef Dani C (2013) Activins in adipogenesis and obesity. Int J Obes (Lond) 37(2):163–166CrossRef
23.
go back to reference David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961PubMedCrossRef David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961PubMedCrossRef
24.
go back to reference David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489PubMedCrossRef David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489PubMedCrossRef
25.
go back to reference Davis PJ (2009) The double-edged sword of the immune system–a force for good or evil in the wound? Int Wound J 6(4):241–245PubMedCrossRef Davis PJ (2009) The double-edged sword of the immune system–a force for good or evil in the wound? Int Wound J 6(4):241–245PubMedCrossRef
26.
go back to reference de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP (2012) The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 359(1–2):101–106PubMedCrossRef de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP (2012) The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 359(1–2):101–106PubMedCrossRef
27.
28.
go back to reference Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J (2008) High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 87(5):1188–1193PubMed Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J (2008) High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 87(5):1188–1193PubMed
29.
go back to reference Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525PubMedCrossRef Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525PubMedCrossRef
30.
go back to reference Endo D, Kogure K, Hasegawa Y, Maku-uchi M, Kojima I (2004) Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells. J Hepatol 40(3):399–404PubMedCrossRef Endo D, Kogure K, Hasegawa Y, Maku-uchi M, Kojima I (2004) Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells. J Hepatol 40(3):399–404PubMedCrossRef
31.
go back to reference Fessing MY, Atoyan R, Shander B, Mardaryev AN, Botchkarev VV Jr, Poterlowicz K, Peng Y, Efimova T, Botchkarev VA (2010) BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. J Invest Dermatol 130(2):398–404PubMedCrossRef Fessing MY, Atoyan R, Shander B, Mardaryev AN, Botchkarev VV Jr, Poterlowicz K, Peng Y, Efimova T, Botchkarev VA (2010) BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. J Invest Dermatol 130(2):398–404PubMedCrossRef
32.
go back to reference Freinkel RK, Woodley D (2001) The biology of the skin. Parthenon Pub. Group, New York Freinkel RK, Woodley D (2001) The biology of the skin. Parthenon Pub. Group, New York
34.
go back to reference Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P, Zucca M, Sozzani S, Stella M, Castagnoli C (2007) Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 16(7):600–610PubMedCrossRef Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P, Zucca M, Sozzani S, Stella M, Castagnoli C (2007) Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 16(7):600–610PubMedCrossRef
35.
go back to reference Funaba M, Ikeda T, Murakami M, Ogawa K, Abe M (2005) Up-regulation of mouse mast cell protease-6 gene by transforming growth factor-beta and activin in mast cell progenitors. Cell Signal 17(1):121–128PubMedCrossRef Funaba M, Ikeda T, Murakami M, Ogawa K, Abe M (2005) Up-regulation of mouse mast cell protease-6 gene by transforming growth factor-beta and activin in mast cell progenitors. Cell Signal 17(1):121–128PubMedCrossRef
36.
go back to reference Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H, Abe M (2003) Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor. J Biol Chem 278(52):52032–52041PubMedCrossRef Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H, Abe M (2003) Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor. J Biol Chem 278(52):52032–52041PubMedCrossRef
37.
go back to reference Funaba M, Ikeda T, Ogawa K, Murakami M, Abe M (2003) Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration. J Leukoc Biol 73(6):793–801PubMedCrossRef Funaba M, Ikeda T, Ogawa K, Murakami M, Abe M (2003) Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration. J Leukoc Biol 73(6):793–801PubMedCrossRef
38.
go back to reference Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947PubMedCrossRef Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947PubMedCrossRef
39.
go back to reference Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Londahl M, Price PE, Jeffcoate WJ (2012) A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes/Metab Res Rev 28(Suppl 1):119–141CrossRef Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Londahl M, Price PE, Jeffcoate WJ (2012) A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes/Metab Res Rev 28(Suppl 1):119–141CrossRef
40.
go back to reference Ge J, Wang Y, Feng Y, Liu H, Cui X, Chen F, Tai G, Liu Z (2009) Direct effects of activin A on the activation of mouse macrophage RAW264.7 cells. Cell Mol Immunol 6(2):129–133PubMedCrossRef Ge J, Wang Y, Feng Y, Liu H, Cui X, Chen F, Tai G, Liu Z (2009) Direct effects of activin A on the activation of mouse macrophage RAW264.7 cells. Cell Mol Immunol 6(2):129–133PubMedCrossRef
41.
go back to reference Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521PubMed Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521PubMed
42.
go back to reference Gold LI, Sung JJ, Siebert JW, Longaker MT (1997) Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol 150(1):209–222PubMed Gold LI, Sung JJ, Siebert JW, Longaker MT (1997) Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol 150(1):209–222PubMed
43.
go back to reference Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1030PubMedCrossRef Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1030PubMedCrossRef
44.
go back to reference Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321PubMedCrossRef Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321PubMedCrossRef
45.
go back to reference Hall AK, Dinsio KJ, Cappuzzello J (2001) Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin. Dev Biol 229(2):263–270PubMedCrossRef Hall AK, Dinsio KJ, Cappuzzello J (2001) Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin. Dev Biol 229(2):263–270PubMedCrossRef
46.
go back to reference Hayashi Y, Maeshima K, Goto F, Kojima I (2007) Activin A as a critical mediator of capillary formation: interaction with the fibroblast growth factor action. Endocr J 54(2):311–318PubMedCrossRef Hayashi Y, Maeshima K, Goto F, Kojima I (2007) Activin A as a critical mediator of capillary formation: interaction with the fibroblast growth factor action. Endocr J 54(2):311–318PubMedCrossRef
47.
go back to reference Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M (2008) BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 103(8):804–812PubMedCrossRef Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M (2008) BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 103(8):804–812PubMedCrossRef
48.
go back to reference Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA (2008) Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs 32(7):509–518PubMedCrossRef Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA (2008) Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs 32(7):509–518PubMedCrossRef
49.
50.
go back to reference Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345(3):1155–1160PubMedCrossRef Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345(3):1155–1160PubMedCrossRef
51.
go back to reference Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128(1 Suppl):e442–e450PubMedCrossRef Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128(1 Suppl):e442–e450PubMedCrossRef
52.
go back to reference Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK (2002) Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem 80(1):54–63PubMedCrossRef Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK (2002) Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem 80(1):54–63PubMedCrossRef
53.
go back to reference Hubner G, Hu Q, Smola H, Werner S (1996) Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol 173(2):490–498PubMedCrossRef Hubner G, Hu Q, Smola H, Werner S (1996) Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol 173(2):490–498PubMedCrossRef
54.
go back to reference Hwang EA, Lee HB, Tark KC (2001) Comparison of bone morphogenetic protein receptors expression in the fetal and adult skin. Yonsei Med J 42(6):581–586PubMed Hwang EA, Lee HB, Tark KC (2001) Comparison of bone morphogenetic protein receptors expression in the fetal and adult skin. Yonsei Med J 42(6):581–586PubMed
55.
go back to reference Ito Y, Sarkar P, Mi Q, Wu N, Bringas P Jr, Liu Y, Reddy S, Maxson R, Deng C, Chai Y (2001) Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 236(1):181–194PubMedCrossRef Ito Y, Sarkar P, Mi Q, Wu N, Bringas P Jr, Liu Y, Reddy S, Maxson R, Deng C, Chai Y (2001) Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 236(1):181–194PubMedCrossRef
57.
go back to reference Kaiser S, Schirmacher P, Philipp A, Protschka M, Moll I, Nicol K, Blessing M (1998) Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. J Invest Dermatol 111(6):1145–1152PubMedCrossRef Kaiser S, Schirmacher P, Philipp A, Protschka M, Moll I, Nicol K, Blessing M (1998) Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. J Invest Dermatol 111(6):1145–1152PubMedCrossRef
58.
go back to reference Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146PubMedCrossRef Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146PubMedCrossRef
59.
go back to reference Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Gotting C, Minartz P, Kleesiek K, Tschoepe D (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66(4):384–393PubMedCrossRef Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Gotting C, Minartz P, Kleesiek K, Tschoepe D (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66(4):384–393PubMedCrossRef
60.
go back to reference Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M (2007) TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 86(11–12):781–799PubMedCrossRef Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M (2007) TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 86(11–12):781–799PubMedCrossRef
61.
go back to reference Knighton DR, Fiegel VD (1989) Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 140(4):1108–1111PubMedCrossRef Knighton DR, Fiegel VD (1989) Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 140(4):1108–1111PubMedCrossRef
62.
go back to reference Kozian DH, Ziche M, Augustin HG (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab Invest 76(2):267–276PubMed Kozian DH, Ziche M, Augustin HG (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab Invest 76(2):267–276PubMed
63.
go back to reference Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY (2009) Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 128(1 Suppl):e758–e765PubMedCrossRef Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY (2009) Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 128(1 Suppl):e758–e765PubMedCrossRef
64.
go back to reference Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501PubMedCrossRef Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501PubMedCrossRef
65.
go back to reference Li G, Cui Y, McIlmurray L, Allen WE, Wang H (2005) rhBMP-2, rhVEGF(165), rhPTN and thrombin-related peptide, TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells. J Orthop Res 23(3):680–685PubMedCrossRef Li G, Cui Y, McIlmurray L, Allen WE, Wang H (2005) rhBMP-2, rhVEGF(165), rhPTN and thrombin-related peptide, TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells. J Orthop Res 23(3):680–685PubMedCrossRef
66.
go back to reference Lin SY, Morrison JR, Phillips DJ, de Kretser DM (2003) Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction 126(2):133–148PubMedCrossRef Lin SY, Morrison JR, Phillips DJ, de Kretser DM (2003) Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction 126(2):133–148PubMedCrossRef
67.
go back to reference Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110(5):1502–1510PubMedCrossRef Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110(5):1502–1510PubMedCrossRef
68.
go back to reference Liu ZJ, Velazquez OC (2008) Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10(11):1869–1882PubMedCrossRef Liu ZJ, Velazquez OC (2008) Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10(11):1869–1882PubMedCrossRef
69.
go back to reference Maeshima K, Maeshima A, Hayashi Y, Kishi S, Kojima I (2004) Crucial role of activin a in tubulogenesis of endothelial cells induced by vascular endothelial growth factor. Endocrinology 145(8):3739–3745PubMedCrossRef Maeshima K, Maeshima A, Hayashi Y, Kishi S, Kojima I (2004) Crucial role of activin a in tubulogenesis of endothelial cells induced by vascular endothelial growth factor. Endocrinology 145(8):3739–3745PubMedCrossRef
70.
go back to reference Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D, Sampath KT, Vukicevic S (2003) Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol 196(2):258–264PubMedCrossRef Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D, Sampath KT, Vukicevic S (2003) Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol 196(2):258–264PubMedCrossRef
71.
go back to reference Martinez VG, Hernandez-Lopez C, Valencia J, Hidalgo L, Entrena A, Zapata AG, Vicente A, Sacedon R, Varas A (2010) The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 89(5):610–618PubMedCrossRef Martinez VG, Hernandez-Lopez C, Valencia J, Hidalgo L, Entrena A, Zapata AG, Vicente A, Sacedon R, Varas A (2010) The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 89(5):610–618PubMedCrossRef
72.
go back to reference Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191PubMedCrossRef Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191PubMedCrossRef
73.
74.
go back to reference McCarthy SA, Bicknell R (1993) Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 268(31):23066–23071PubMed McCarthy SA, Bicknell R (1993) Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 268(31):23066–23071PubMed
75.
go back to reference Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen 15(5):671–682PubMedCrossRef Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen 15(5):671–682PubMedCrossRef
76.
go back to reference Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037PubMedCrossRef Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037PubMedCrossRef
77.
go back to reference Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23(16):5664–5679PubMedCrossRef Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23(16):5664–5679PubMedCrossRef
78.
go back to reference Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroeck D, Balling R, Werner S (1999) Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 18(19):5205–5215PubMedCrossRef Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroeck D, Balling R, Werner S (1999) Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 18(19):5205–5215PubMedCrossRef
79.
go back to reference Munz B, Tretter YP, Hertel M, Engelhardt F, Alzheimer C, Werner S (2001) The roles of activins in repair processes of the skin and the brain. Mol Cell Endocrinol 180(1–2):169–177PubMedCrossRef Munz B, Tretter YP, Hertel M, Engelhardt F, Alzheimer C, Werner S (2001) The roles of activins in repair processes of the skin and the brain. Mol Cell Endocrinol 180(1–2):169–177PubMedCrossRef
80.
go back to reference Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S (2008) Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS ONE 3(9):e3271PubMedCrossRef Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S (2008) Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS ONE 3(9):e3271PubMedCrossRef
81.
go back to reference Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187(5A):65S–70SPubMedCrossRef Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187(5A):65S–70SPubMedCrossRef
82.
go back to reference Nagamine K, Furue M, Fukui A, Matsuda A, Hori T, Asashima M (2007) Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus. Biol Pharm Bull 30(10):1856–1859PubMedCrossRef Nagamine K, Furue M, Fukui A, Matsuda A, Hori T, Asashima M (2007) Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus. Biol Pharm Bull 30(10):1856–1859PubMedCrossRef
84.
go back to reference Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790PubMedCrossRef Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790PubMedCrossRef
85.
go back to reference Pangas SA, Woodruff TK (2000) Activin signal transduction pathways. TEM 11(8):309–314PubMed Pangas SA, Woodruff TK (2000) Activin signal transduction pathways. TEM 11(8):309–314PubMed
86.
go back to reference Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65(5):1877–1886PubMedCrossRef Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65(5):1877–1886PubMedCrossRef
87.
go back to reference Pavelock KA, Girard BM, Schutz KC, Braas KM, May V (2007) Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem 100(3):603–616PubMedCrossRef Pavelock KA, Girard BM, Schutz KC, Braas KM, May V (2007) Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem 100(3):603–616PubMedCrossRef
88.
go back to reference Poulaki V, Mitsiades N, Kruse FE, Radetzky S, Iliaki E, Kirchhof B, Joussen AM (2004) Activin a in the regulation of corneal neovascularization and vascular endothelial growth factor expression. Am J Pathol 164(4):1293–1302PubMedCrossRef Poulaki V, Mitsiades N, Kruse FE, Radetzky S, Iliaki E, Kirchhof B, Joussen AM (2004) Activin a in the regulation of corneal neovascularization and vascular endothelial growth factor expression. Am J Pathol 164(4):1293–1302PubMedCrossRef
89.
go back to reference Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131(11):741–750PubMedCrossRef Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131(11):741–750PubMedCrossRef
90.
go back to reference Ren R, Charles PC, Zhang C, Wu Y, Wang H, Patterson C (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109(7):2847–2853PubMed Ren R, Charles PC, Zhang C, Wu Y, Wang H, Patterson C (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109(7):2847–2853PubMed
91.
go back to reference Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann NY Acad Sci 995:1–10PubMedCrossRef Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann NY Acad Sci 995:1–10PubMedCrossRef
92.
go back to reference Robson NC, Phillips DJ, McAlpine T, Shin A, Svobodova S, Toy T, Pillay V, Kirkpatrick N, Zanker D, Wilson K, Helling I, Wei H, Chen W, Cebon J, Maraskovsky E (2008) Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 111(5):2733–2743PubMedCrossRef Robson NC, Phillips DJ, McAlpine T, Shin A, Svobodova S, Toy T, Pillay V, Kirkpatrick N, Zanker D, Wilson K, Helling I, Wei H, Chen W, Cebon J, Maraskovsky E (2008) Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 111(5):2733–2743PubMedCrossRef
93.
go back to reference Rogers LC, Frykberg RG, Armstrong DG, Boulton AJ, Edmonds M, Van GH, Hartemann A, Game F, Jeffcoate W, Jirkovska A, Jude E, Morbach S, Morrison WB, Pinzur M, Pitocco D, Sanders L, Wukich DK, Uccioli L (2011) The Charcot foot in diabetes. J Am Podiatr Med Assoc 101(5):437–446PubMed Rogers LC, Frykberg RG, Armstrong DG, Boulton AJ, Edmonds M, Van GH, Hartemann A, Game F, Jeffcoate W, Jirkovska A, Jude E, Morbach S, Morrison WB, Pinzur M, Pitocco D, Sanders L, Wukich DK, Uccioli L (2011) The Charcot foot in diabetes. J Am Podiatr Med Assoc 101(5):437–446PubMed
94.
go back to reference Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26(28):4158–4170PubMedCrossRef Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26(28):4158–4170PubMedCrossRef
95.
go back to reference Rotzer D, Krampert M, Sulyok S, Braun S, Stark HJ, Boukamp P, Werner S (2006) Id proteins: novel targets of activin action, which regulate epidermal homeostasis. Oncogene 25(14):2070–2081PubMedCrossRef Rotzer D, Krampert M, Sulyok S, Braun S, Stark HJ, Boukamp P, Werner S (2006) Id proteins: novel targets of activin action, which regulate epidermal homeostasis. Oncogene 25(14):2070–2081PubMedCrossRef
96.
go back to reference Salogni L, Musso T, Bosisio D, Mirolo M, Jala VR, Haribabu B, Locati M, Sozzani S (2009) Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113(23):5848–5856PubMedCrossRef Salogni L, Musso T, Bosisio D, Mirolo M, Jala VR, Haribabu B, Locati M, Sozzani S (2009) Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113(23):5848–5856PubMedCrossRef
97.
go back to reference Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972PubMedCrossRef Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972PubMedCrossRef
98.
go back to reference Scutera S, Riboldi E, Daniele R, Elia AR, Fraone T, Castagnoli C, Giovarelli M, Musso T, Sozzani S (2008) Production and function of activin A in human dendritic cells. Eur Cytokine Netw 19(1):60–68PubMed Scutera S, Riboldi E, Daniele R, Elia AR, Fraone T, Castagnoli C, Giovarelli M, Musso T, Sozzani S (2008) Production and function of activin A in human dendritic cells. Eur Cytokine Netw 19(1):60–68PubMed
99.
go back to reference Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114(10):2197–2206PubMedCrossRef Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114(10):2197–2206PubMedCrossRef
100.
go back to reference Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRef Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRef
101.
go back to reference Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRef Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRef
103.
go back to reference Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F (2004) Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18(9):2333–2343PubMedCrossRef Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F (2004) Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18(9):2333–2343PubMedCrossRef
104.
go back to reference Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta -estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281PubMedCrossRef Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta -estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281PubMedCrossRef
105.
go back to reference Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T (2008) Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 25(2):157–164PubMedCrossRef Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T (2008) Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 25(2):157–164PubMedCrossRef
106.
go back to reference Stelnicki EJ, Longaker MT, Holmes D, Vanderwall K, Harrison MR, Largman C, Hoffman WY (1998) Bone morphogenetic protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101(1):12–19PubMedCrossRef Stelnicki EJ, Longaker MT, Holmes D, Vanderwall K, Harrison MR, Largman C, Hoffman WY (1998) Bone morphogenetic protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101(1):12–19PubMedCrossRef
107.
go back to reference Stoitzner P, Stossel H, Wankell M, Hofer S, Heufler C, Werner S, Romani N (2005) Langerhans cells are strongly reduced in the skin of transgenic mice overexpressing follistatin in the epidermis. Eur J Cell Biol 84(8):733–741PubMedCrossRef Stoitzner P, Stossel H, Wankell M, Hofer S, Heufler C, Werner S, Romani N (2005) Langerhans cells are strongly reduced in the skin of transgenic mice overexpressing follistatin in the epidermis. Eur J Cell Biol 84(8):733–741PubMedCrossRef
108.
go back to reference Sulyok S, Wankell M, Alzheimer C, Werner S (2004) Activin: an important regulator of wound repair, fibrosis, and neuroprotection. Mol Cell Endocrinol 225(1–2):127–132PubMedCrossRef Sulyok S, Wankell M, Alzheimer C, Werner S (2004) Activin: an important regulator of wound repair, fibrosis, and neuroprotection. Mol Cell Endocrinol 225(1–2):127–132PubMedCrossRef
109.
go back to reference Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692PubMedCrossRef Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692PubMedCrossRef
110.
go back to reference Symes AJ, Pitts RL, Conover J, Kos K, Coulombe J (2000) Synergy of activin and ciliary neurotrophic factor signaling pathways in the induction of vasoactive intestinal peptide gene expression. Mol Endocrinol 14(3):429–439PubMedCrossRef Symes AJ, Pitts RL, Conover J, Kos K, Coulombe J (2000) Synergy of activin and ciliary neurotrophic factor signaling pathways in the induction of vasoactive intestinal peptide gene expression. Mol Endocrinol 14(3):429–439PubMedCrossRef
111.
go back to reference ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273PubMedCrossRef ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273PubMedCrossRef
112.
go back to reference Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK (2004) Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol 225(1–2):9–17PubMedCrossRef Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK (2004) Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol 225(1–2):9–17PubMedCrossRef
113.
go back to reference Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS (2005) The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell 9(4):535–543PubMedCrossRef Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS (2005) The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell 9(4):535–543PubMedCrossRef
114.
go back to reference Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791PubMedCrossRef Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791PubMedCrossRef
115.
go back to reference Turns M (2011) The diabetic foot: an overview of assessment and complications. Br J Nurs 20(15):S19–S25PubMed Turns M (2011) The diabetic foot: an overview of assessment and complications. Br J Nurs 20(15):S19–S25PubMed
116.
117.
go back to reference Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331PubMedCrossRef Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331PubMedCrossRef
118.
go back to reference Wagner K, Peters M, Scholz A, Benckert C, Ruderisch HS, Wiedenmann B, Rosewicz S (2004) Activin A stimulates vascular endothelial growth factor gene transcription in human hepatocellular carcinoma cells. Gastroenterology 126(7):1828–1843PubMedCrossRef Wagner K, Peters M, Scholz A, Benckert C, Ruderisch HS, Wiedenmann B, Rosewicz S (2004) Activin A stimulates vascular endothelial growth factor gene transcription in human hepatocellular carcinoma cells. Gastroenterology 126(7):1828–1843PubMedCrossRef
119.
go back to reference Wang D, Prakash J, Nguyen P, Davis-Dusenbery BN, Hill NS, Layne MD, Hata A, Lagna G (2012) Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem 287(33):28067–28077PubMedCrossRef Wang D, Prakash J, Nguyen P, Davis-Dusenbery BN, Hill NS, Layne MD, Hata A, Lagna G (2012) Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem 287(33):28067–28077PubMedCrossRef
120.
go back to reference Wang SY, Tai GX, Zhang PY, Mu DP, Zhang XJ, Liu ZH (2008) Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 42(1):85–91PubMedCrossRef Wang SY, Tai GX, Zhang PY, Mu DP, Zhang XJ, Liu ZH (2008) Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 42(1):85–91PubMedCrossRef
121.
go back to reference Wankell M, Munz B, Hubner G, Hans W, Wolf E, Goppelt A, Werner S (2001) Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 20(19):5361–5372PubMedCrossRef Wankell M, Munz B, Hubner G, Hans W, Wolf E, Goppelt A, Werner S (2001) Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 20(19):5361–5372PubMedCrossRef
122.
go back to reference Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17(3):157–171PubMedCrossRef Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17(3):157–171PubMedCrossRef
123.
go back to reference Werner S, Beer HD, Mauch C, Luscher B (2001) The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Oncogene 20(51):7494–7504PubMedCrossRef Werner S, Beer HD, Mauch C, Luscher B (2001) The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Oncogene 20(51):7494–7504PubMedCrossRef
124.
go back to reference Xu P, Hall AK (2006) The role of activin in neuropeptide induction and pain sensation. Dev Biol 299(2):303–309PubMedCrossRef Xu P, Hall AK (2006) The role of activin in neuropeptide induction and pain sensation. Dev Biol 299(2):303–309PubMedCrossRef
125.
go back to reference Xu P, Hall AK (2007) Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 150(3):665–674PubMedCrossRef Xu P, Hall AK (2007) Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 150(3):665–674PubMedCrossRef
126.
go back to reference Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK (2005) Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 25(40):9227–9235PubMedCrossRef Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK (2005) Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 25(40):9227–9235PubMedCrossRef
127.
go back to reference Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol 176(5):2247–2258PubMedCrossRef Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol 176(5):2247–2258PubMedCrossRef
128.
go back to reference Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, Yahata Y, Tohyama M, Hanakawa Y, Sayama K, Hashimoto K (2006) Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci 42(2):111–119PubMedCrossRef Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, Yahata Y, Tohyama M, Hanakawa Y, Sayama K, Hashimoto K (2006) Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci 42(2):111–119PubMedCrossRef
129.
go back to reference Zhang C, Wang KZ, Qiang H, Tang YL, Li Q, Li M, Dang XQ (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31(7):821–830PubMedCrossRef Zhang C, Wang KZ, Qiang H, Tang YL, Li Q, Li M, Dang XQ (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31(7):821–830PubMedCrossRef
130.
go back to reference Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24(7):1224–1233PubMedCrossRef Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24(7):1224–1233PubMedCrossRef
131.
go back to reference Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L, Zhang L (2011) Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS ONE 6(9):e25143PubMedCrossRef Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L, Zhang L (2011) Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS ONE 6(9):e25143PubMedCrossRef
132.
go back to reference Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C, Patterson C, Moser M (2007) ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 76(3):390–399PubMedCrossRef Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C, Patterson C, Moser M (2007) ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 76(3):390–399PubMedCrossRef
Metadata
Title
Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing
Authors
J. Moura
L. da Silva
M. T. Cruz
E. Carvalho
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Archives of Dermatological Research / Issue 7/2013
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-013-1381-2

Other articles of this Issue 7/2013

Archives of Dermatological Research 7/2013 Go to the issue