Skip to main content
Top
Published in: Acta Neuropathologica 4/2015

01-04-2015 | Original Paper

Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer’s disease

Authors: Csaba Ádori, Laura Glück, Swapnali Barde, Takashi Yoshitake, Gabor G. Kovacs, Jan Mulder, Zsófia Maglóczky, László Havas, Kata Bölcskei, Nicholas Mitsios, Mathias Uhlén, János Szolcsányi, Jan Kehr, Annica Rönnbäck, Thue Schwartz, Jens F. Rehfeld, Tibor Harkany, Miklós Palkovits, Stefan Schulz, Tomas Hökfelt

Published in: Acta Neuropathologica | Issue 4/2015

Login to get access

Abstract

Alzheimer’s disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer’s and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer’s disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer’s pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2 −/− mice and, unlike in Sstr1 / or Sstr4 / genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2 −/− mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463PubMed Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463PubMed
2.
go back to reference Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiatry 135:216–223PubMed Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiatry 135:216–223PubMed
3.
go back to reference Adori C, Ando RD, Szekeres M, Gutknecht L, Kovacs GG, Hunyady L, Lesch KP, Bagdy G (2011) Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat. J Comp Neurol 519:2353–2378. doi:10.1002/cne.22631 PubMed Adori C, Ando RD, Szekeres M, Gutknecht L, Kovacs GG, Hunyady L, Lesch KP, Bagdy G (2011) Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat. J Comp Neurol 519:2353–2378. doi:10.​1002/​cne.​22631 PubMed
4.
go back to reference Adori C, Low P, Ando RD, Gutknecht L, Pap D, Truszka F, Takacs J, Kovacs GG, Lesch KP, Bagdy G (2011) Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology 213:377–391. doi:10.1007/s00213-010-2041-2 PubMed Adori C, Low P, Ando RD, Gutknecht L, Pap D, Truszka F, Takacs J, Kovacs GG, Lesch KP, Bagdy G (2011) Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology 213:377–391. doi:10.​1007/​s00213-010-2041-2 PubMed
5.
go back to reference Allen JP, Canty AJ, Schulz S, Humphrey PP, Emson PC, Young HM (2002) Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 454:329–340. doi:10.1002/cne.10466 PubMed Allen JP, Canty AJ, Schulz S, Humphrey PP, Emson PC, Young HM (2002) Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 454:329–340. doi:10.​1002/​cne.​10466 PubMed
6.
go back to reference Allen JP, Hathway GJ, Clarke NJ, Jowett MI, Topps S, Kendrick KM, Humphrey PP, Wilkinson LS, Emson PC (2003) Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci 17:1881–1895PubMed Allen JP, Hathway GJ, Clarke NJ, Jowett MI, Topps S, Kendrick KM, Humphrey PP, Wilkinson LS, Emson PC (2003) Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci 17:1881–1895PubMed
7.
go back to reference Armstrong DM, Hersh LB, Gage FH (1988) Morphologic alterations of cholinergic processes in the neocortex of aged rats. Neurobiol Aging 9:199–205PubMed Armstrong DM, Hersh LB, Gage FH (1988) Morphologic alterations of cholinergic processes in the neocortex of aged rats. Neurobiol Aging 9:199–205PubMed
8.
go back to reference Aston-Jones G (2004) Locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system, vol 3rd edn. Elsevier, Amsterdam, pp 259–264 Aston-Jones G (2004) Locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system, vol 3rd edn. Elsevier, Amsterdam, pp 259–264
9.
go back to reference Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT (1996) Role of the locus coeruleus in emotional activation. Prog Brain Res 107:379–402PubMed Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT (1996) Role of the locus coeruleus in emotional activation. Prog Brain Res 107:379–402PubMed
10.
11.
go back to reference Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84PubMed Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84PubMed
12.
go back to reference Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–168PubMed Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–168PubMed
16.
go back to reference Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79PubMed Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79PubMed
20.
go back to reference Burgos-Ramos E, Hervas-Aguilar A, Aguado-Llera D, Puebla-Jimenez L, Hernandez-Pinto AM, Barrios V, Arilla-Ferreiro E (2008) Somatostatin and Alzheimer’s disease. Mol Cell Endocrinol 286:104–111. doi:10.1016/j.mce.2008.01.014 PubMed Burgos-Ramos E, Hervas-Aguilar A, Aguado-Llera D, Puebla-Jimenez L, Hernandez-Pinto AM, Barrios V, Arilla-Ferreiro E (2008) Somatostatin and Alzheimer’s disease. Mol Cell Endocrinol 286:104–111. doi:10.​1016/​j.​mce.​2008.​01.​014 PubMed
21.
go back to reference Carpentier V, Vaudry H, Laquerriere A, Tayot J, Leroux P (1996) Distribution of somatostatin receptors in the adult human brainstem. Brain Res 734:135–148PubMed Carpentier V, Vaudry H, Laquerriere A, Tayot J, Leroux P (1996) Distribution of somatostatin receptors in the adult human brainstem. Brain Res 734:135–148PubMed
22.
go back to reference Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 287:373–392. doi:10.1002/cne.902870308 PubMed Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 287:373–392. doi:10.​1002/​cne.​902870308 PubMed
23.
go back to reference Chessell IP, Black MD, Feniuk W, Humphrey PP (1996) Operational characteristics of somatostatin receptors mediating inhibitory actions on rat locus coeruleus neurones. Br J Pharmacol 117:1673–1678PubMedCentralPubMed Chessell IP, Black MD, Feniuk W, Humphrey PP (1996) Operational characteristics of somatostatin receptors mediating inhibitory actions on rat locus coeruleus neurones. Br J Pharmacol 117:1673–1678PubMedCentralPubMed
24.
go back to reference Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56:1135–1140PubMed Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56:1135–1140PubMed
25.
go back to reference Cross AJ, Crow TJ, Perry EK, Perry RH, Blessed G, Tomlinson BE (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br Med J 282:93–94 Cross AJ, Crow TJ, Perry EK, Perry RH, Blessed G, Tomlinson BE (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br Med J 282:93–94
26.
go back to reference Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62:1–55 Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62:1–55
27.
go back to reference Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288:279–280PubMed Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288:279–280PubMed
28.
go back to reference De Martino C, Zamboni L (1967) Silver methenamine stain for electron microscopy. J Ultrastruct Res 19:273–282PubMed De Martino C, Zamboni L (1967) Silver methenamine stain for electron microscopy. J Ultrastruct Res 19:273–282PubMed
30.
go back to reference Dournaud P, Delaere P, Hauw JJ, Epelbaum J (1995) Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer’s disease. Neurobiol Aging 16:817–823PubMed Dournaud P, Delaere P, Hauw JJ, Epelbaum J (1995) Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer’s disease. Neurobiol Aging 16:817–823PubMed
31.
go back to reference Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J (2002) Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 112:455–466PubMed Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J (2002) Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 112:455–466PubMed
35.
go back to reference Epelbaum J, Bluet-Pajot MT, Llorens-Cortes C, Kordon C, Mounier F, Senut MC, Videau C (1990) 125I-[Tyr0, D-Trp8]somatostatin-14 binding sites in the locus coeruleus of the rat are located on both ascending and descending projecting noradrenergic cells. Peptides 11:21–27PubMed Epelbaum J, Bluet-Pajot MT, Llorens-Cortes C, Kordon C, Mounier F, Senut MC, Videau C (1990) 125I-[Tyr0, D-Trp8]somatostatin-14 binding sites in the locus coeruleus of the rat are located on both ascending and descending projecting noradrenergic cells. Peptides 11:21–27PubMed
37.
go back to reference Farris TW, Butcher LL, Oh JD, Woolf NJ (1995) Trophic-factor modulation of cortical acetylcholinesterase reappearance following transection of the medial cholinergic pathway in the adult rat. Exp Neurol 131:180–192PubMed Farris TW, Butcher LL, Oh JD, Woolf NJ (1995) Trophic-factor modulation of cortical acetylcholinesterase reappearance following transection of the medial cholinergic pathway in the adult rat. Exp Neurol 131:180–192PubMed
38.
go back to reference Ferriero DM, Sheldon RA, Messing RO (1994) Somatostatin enhances nerve growth factor-induced neurite outgrowth in PC12 cells. Brain Res Dev Brain Res 80:13–18PubMed Ferriero DM, Sheldon RA, Messing RO (1994) Somatostatin enhances nerve growth factor-induced neurite outgrowth in PC12 cells. Brain Res Dev Brain Res 80:13–18PubMed
39.
go back to reference Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914PubMed Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914PubMed
40.
go back to reference Fuxe K, Hökfelt T, Ungerstedt U (1970) Central monoaminergic tracts. In: Clark WG, Del Guidice J (eds) Principles of Psychopharmacology, Academic Press, London, pp 87–96 Fuxe K, Hökfelt T, Ungerstedt U (1970) Central monoaminergic tracts. In: Clark WG, Del Guidice J (eds) Principles of Psychopharmacology, Academic Press, London, pp 87–96
41.
go back to reference Gagne C, Moyse E, Kocher L, Bour H, Pujol JF (1990) Light-microscopic localization of somatostatin binding sites in the locus coeruleus of the rat. Brain Res 530:196–204PubMed Gagne C, Moyse E, Kocher L, Bour H, Pujol JF (1990) Light-microscopic localization of somatostatin binding sites in the locus coeruleus of the rat. Brain Res 530:196–204PubMed
42.
go back to reference Gahete MD, Rubio A, Duran-Prado M, Avila J, Luque RM, Castano JP (2010) Expression of somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis 20:465–475. doi:10.3233/JAD-2010-1385 PubMed Gahete MD, Rubio A, Duran-Prado M, Avila J, Luque RM, Castano JP (2010) Expression of somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis 20:465–475. doi:10.​3233/​JAD-2010-1385 PubMed
43.
go back to reference Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271. doi:10.1002/cne.902790208 PubMed Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271. doi:10.​1002/​cne.​902790208 PubMed
44.
go back to reference German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676. doi:10.1002/ana.410320510 PubMed German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676. doi:10.​1002/​ana.​410320510 PubMed
45.
go back to reference German DC, Nelson O, Liang F, Liang CL, Games D (2005) The PDAPP mouse model of Alzheimer’s disease: locus coeruleus neuronal shrinkage. J Comp Neurol 492:469–476. doi:10.1002/cne.20744 PubMed German DC, Nelson O, Liang F, Liang CL, Games D (2005) The PDAPP mouse model of Alzheimer’s disease: locus coeruleus neuronal shrinkage. J Comp Neurol 492:469–476. doi:10.​1002/​cne.​20744 PubMed
47.
go back to reference Grzanna R, Fritschy JM (1991) Efferent projections of different subpopulations of central noradrenaline neurons. Prog Brain Res 88:89–101PubMed Grzanna R, Fritschy JM (1991) Efferent projections of different subpopulations of central noradrenaline neurons. Prog Brain Res 88:89–101PubMed
48.
go back to reference Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532PubMed Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532PubMed
49.
go back to reference Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73:454–463. doi:10.1016/j.biopsych.2012.06.013 PubMed Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73:454–463. doi:10.​1016/​j.​biopsych.​2012.​06.​013 PubMed
50.
go back to reference Harro J, Oreland L, Vasar E, Bradwejn J (1995) Impaired exploratory behaviour after DSP-4 treatment in rats: implications for the increased anxiety after noradrenergic denervation. Eur Neuropsychopharmacol 5:447–455PubMed Harro J, Oreland L, Vasar E, Bradwejn J (1995) Impaired exploratory behaviour after DSP-4 treatment in rats: implications for the increased anxiety after noradrenergic denervation. Eur Neuropsychopharmacol 5:447–455PubMed
51.
go back to reference Helyes Z, Pinter E, Sandor K, Elekes K, Banvolgyi A, Keszthelyi D, Szoke E, Toth DM, Sandor Z, Kereskai L, Pozsgai G, Allen JP, Emson PC, Markovics A, Szolcsanyi J (2009) Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc Natl Acad Sci USA 106:13088–13093. doi:10.1073/pnas.0900681106 PubMedCentralPubMed Helyes Z, Pinter E, Sandor K, Elekes K, Banvolgyi A, Keszthelyi D, Szoke E, Toth DM, Sandor Z, Kereskai L, Pozsgai G, Allen JP, Emson PC, Markovics A, Szolcsanyi J (2009) Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc Natl Acad Sci USA 106:13088–13093. doi:10.​1073/​pnas.​0900681106 PubMedCentralPubMed
52.
go back to reference Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 107:6058–6063. doi:10.1073/pnas.0909586107 PubMedCentralPubMed Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 107:6058–6063. doi:10.​1073/​pnas.​0909586107 PubMedCentralPubMed
53.
go back to reference Horgan J, Miguel-Hidalgo JJ, Thrasher M, Bissette G (2007) Longitudinal brain corticotropin releasing factor and somatostatin in a transgenic mouse (TG2576) model of Alzheimer’s disease. J Alzheimers Dis 12:115–127PubMedCentralPubMed Horgan J, Miguel-Hidalgo JJ, Thrasher M, Bissette G (2007) Longitudinal brain corticotropin releasing factor and somatostatin in a transgenic mouse (TG2576) model of Alzheimer’s disease. J Alzheimers Dis 12:115–127PubMedCentralPubMed
54.
go back to reference Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE et al (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88. doi:10.1016/S0165-6147(00)88988-9 Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE et al (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88. doi:10.​1016/​S0165-6147(00)88988-9
55.
go back to reference Inoue M, Nakajima S, Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. J Physiol 407:177–198PubMedCentralPubMed Inoue M, Nakajima S, Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. J Physiol 407:177–198PubMedCentralPubMed
56.
go back to reference Kampf C, Olsson I, Ryberg U, Sjostedt E, Ponten F (2012) Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp JoVE. doi:10.3791/3620 Kampf C, Olsson I, Ryberg U, Sjostedt E, Ponten F (2012) Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp JoVE. doi:10.​3791/​3620
57.
go back to reference Kehr J, Yoshitake T (2006) Monitoring brain chemical signals by microdialysis. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of Sensors, vol 6. American Scientific Publishers, USA, pp 287–312 Kehr J, Yoshitake T (2006) Monitoring brain chemical signals by microdialysis. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of Sensors, vol 6. American Scientific Publishers, USA, pp 287–312
58.
go back to reference Kowall NW, Beal MF (1988) Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: normal anatomy and alterations in Alzheimer’s disease. Ann Neurol 23:105–114. doi:10.1002/ana.410230202 PubMed Kowall NW, Beal MF (1988) Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: normal anatomy and alterations in Alzheimer’s disease. Ann Neurol 23:105–114. doi:10.​1002/​ana.​410230202 PubMed
59.
go back to reference Krantic S, Robitaille Y, Quirion R (1992) Deficits in the somatostatin SS1 receptor sub-type in frontal and temporal cortices in Alzheimer’s disease. Brain Res 573:299–304PubMed Krantic S, Robitaille Y, Quirion R (1992) Deficits in the somatostatin SS1 receptor sub-type in frontal and temporal cortices in Alzheimer’s disease. Brain Res 573:299–304PubMed
60.
go back to reference Kummer MP, Hammerschmidt T, Martinez A, Terwel D, Eichele G, Witten A, Figura S, Stoll M, Schwartz S, Pape HC, Schultze JL, Weinshenker D, Heneka MT (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosc 34:8845–8854. doi:10.1523/JNEUROSCI.4027-13.2014 Kummer MP, Hammerschmidt T, Martinez A, Terwel D, Eichele G, Witten A, Figura S, Stoll M, Schwartz S, Pape HC, Schultze JL, Weinshenker D, Heneka MT (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosc 34:8845–8854. doi:10.​1523/​JNEUROSCI.​4027-13.​2014
62.
go back to reference Le Maitre E, Barde SS, Palkovits M, Diaz-Heijtz R, Hokfelt TG (2013) Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc Natl Acad Sci USA 110:E536–E545. doi:10.1073/pnas.1221378110 PubMedCentralPubMed Le Maitre E, Barde SS, Palkovits M, Diaz-Heijtz R, Hokfelt TG (2013) Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc Natl Acad Sci USA 110:E536–E545. doi:10.​1073/​pnas.​1221378110 PubMedCentralPubMed
63.
go back to reference Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162PubMed Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162PubMed
65.
go back to reference Mann DM, Lincoln J, Yates PO, Stamp JE, Toper S (1980) Changes in the monoamine containing neurones of the human CNS in senile dementia. Br J Psychiatry 136:533–541PubMed Mann DM, Lincoln J, Yates PO, Stamp JE, Toper S (1980) Changes in the monoamine containing neurones of the human CNS in senile dementia. Br J Psychiatry 136:533–541PubMed
66.
67.
go back to reference Masaya Tohyama KT (1998) Atlas of neuroactive substances and their receptors in the rat. Oxford University Press, New York Masaya Tohyama KT (1998) Atlas of neuroactive substances and their receptors in the rat. Oxford University Press, New York
68.
go back to reference Masuko S, Nakajima Y, Nakajima S, Yamaguchi K (1986) Noradrenergic neurons from the locus ceruleus in dissociated cell culture: culture methods, morphology, and electrophysiology. J Neurosci 6:3229–3241PubMed Masuko S, Nakajima Y, Nakajima S, Yamaguchi K (1986) Noradrenergic neurons from the locus ceruleus in dissociated cell culture: culture methods, morphology, and electrophysiology. J Neurosci 6:3229–3241PubMed
69.
go back to reference McCarthy AD, Owens IJ, Bansal AT, McTighe SM, Bussey TJ, Saksida LM (2011) FK962 and donepezil act synergistically to improve cognition in rats: potential as an add-on therapy for Alzheimer’s disease. Pharmacol Biochem Behav 98:76–80. doi:10.1016/j.pbb.2010.11.019 PubMed McCarthy AD, Owens IJ, Bansal AT, McTighe SM, Bussey TJ, Saksida LM (2011) FK962 and donepezil act synergistically to improve cognition in rats: potential as an add-on therapy for Alzheimer’s disease. Pharmacol Biochem Behav 98:76–80. doi:10.​1016/​j.​pbb.​2010.​11.​019 PubMed
70.
71.
go back to reference Melander T, Hökfelt T, Rokaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654PubMed Melander T, Hökfelt T, Rokaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654PubMed
73.
go back to reference Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224. doi:10.1016/j.pnpbp.2005.08.007 PubMed Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224. doi:10.​1016/​j.​pnpbp.​2005.​08.​007 PubMed
74.
go back to reference Morrison JH, Rogers J, Scherr S, Benoit R, Bloom FE (1985) Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314:90–92PubMed Morrison JH, Rogers J, Scherr S, Benoit R, Bloom FE (1985) Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314:90–92PubMed
75.
go back to reference Murayama S, Saito Y (2004) Neuropathological diagnostic criteria for Alzheimer’s disease. Neuropathology 24:254–260PubMed Murayama S, Saito Y (2004) Neuropathological diagnostic criteria for Alzheimer’s disease. Neuropathology 24:254–260PubMed
76.
go back to reference Nemeroff CB, Kizer JS, Reynolds GP, Bissette G (1989) Neuropeptides in Alzheimer’s disease: a postmortem study. Regul Pept 25:123–130PubMed Nemeroff CB, Kizer JS, Reynolds GP, Bissette G (1989) Neuropeptides in Alzheimer’s disease: a postmortem study. Regul Pept 25:123–130PubMed
77.
go back to reference Nishimura A, Ueda S, Takeuchi Y, Matsushita H, Sawada T, Kawata M (1998) Vulnerability to aging in the rat serotonergic system. Acta Neuropathol 96:581–595PubMed Nishimura A, Ueda S, Takeuchi Y, Matsushita H, Sawada T, Kawata M (1998) Vulnerability to aging in the rat serotonergic system. Acta Neuropathol 96:581–595PubMed
78.
go back to reference Norberg KA (1967) Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res 5:125–170PubMed Norberg KA (1967) Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res 5:125–170PubMed
79.
go back to reference Olpe HR, Steinmann MW, Pozza MF, Haas HL (1987) Comparative investigations on the actions of ACTH1-24, somatostatin, neurotensin, substance P and vasopressin on locus coeruleus neuronal activity in vitro. Naunyn Schmiedebergs Arch Pharmacol 336:434–437PubMed Olpe HR, Steinmann MW, Pozza MF, Haas HL (1987) Comparative investigations on the actions of ACTH1-24, somatostatin, neurotensin, substance P and vasopressin on locus coeruleus neuronal activity in vitro. Naunyn Schmiedebergs Arch Pharmacol 336:434–437PubMed
80.
go back to reference Palkovits M, Epelbaum J, Tapia-Arancibia L, Kordon C (1982) Somatostatin in catecholamine-rich nuclei of the brainstem. Neuropeptides 3:139–144PubMed Palkovits M, Epelbaum J, Tapia-Arancibia L, Kordon C (1982) Somatostatin in catecholamine-rich nuclei of the brainstem. Neuropeptides 3:139–144PubMed
81.
go back to reference Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401:231–238PubMed Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401:231–238PubMed
82.
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press Inc., San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press Inc., San Diego
83.
go back to reference Peng I, Binder LI, Black MM (1986) Biochemical and immunological analyses of cytoskeletal domains of neurons. J Cell Biol 102:252–262PubMed Peng I, Binder LI, Black MM (1986) Biochemical and immunological analyses of cytoskeletal domains of neurons. J Cell Biol 102:252–262PubMed
84.
go back to reference Ramos B, Baglietto-Vargas D, del Rio JC, Moreno-Gonzalez I, Santa-Maria C, Jimenez S, Caballero C, Lopez-Tellez JF, Khan ZU, Ruano D, Gutierrez A, Vitorica J (2006) Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol Aging 27:1658–1672. doi:10.1016/j.neurobiolaging.2005.09.022 PubMed Ramos B, Baglietto-Vargas D, del Rio JC, Moreno-Gonzalez I, Santa-Maria C, Jimenez S, Caballero C, Lopez-Tellez JF, Khan ZU, Ruano D, Gutierrez A, Vitorica J (2006) Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol Aging 27:1658–1672. doi:10.​1016/​j.​neurobiolaging.​2005.​09.​022 PubMed
86.
87.
go back to reference Ronnback A, Sagelius H, Bergstedt KD, Naslund J, Westermark GT, Winblad B, Graff C (2012) Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions. Neurobiol Aging 33(831):e811–e839. doi:10.1016/j.neurobiolaging.2011.07.012 Ronnback A, Sagelius H, Bergstedt KD, Naslund J, Westermark GT, Winblad B, Graff C (2012) Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions. Neurobiol Aging 33(831):e811–e839. doi:10.​1016/​j.​neurobiolaging.​2011.​07.​012
89.
go back to reference Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20:373–377PubMed Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20:373–377PubMed
90.
go back to reference Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.1038/nm1206 PubMed Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.​1038/​nm1206 PubMed
91.
go back to reference Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP, Price DL, Tang F, Markowska AL, Borchelt DR (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18:602–617. doi:10.1016/j.nbd.2004.10.022 PubMed Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP, Price DL, Tang F, Markowska AL, Borchelt DR (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18:602–617. doi:10.​1016/​j.​nbd.​2004.​10.​022 PubMed
92.
go back to reference Schalling M, Seroogy K, Hökfelt T, Chai SY, Hallman H, Persson H, Larhammar D, Ericsson A, Terenius L, Graffi J et al (1988) Neuropeptide tyrosine in the rat adrenal gland–immunohistochemical and in situ hybridization studies. Neuroscience 24:337–349PubMed Schalling M, Seroogy K, Hökfelt T, Chai SY, Hallman H, Persson H, Larhammar D, Ericsson A, Terenius L, Graffi J et al (1988) Neuropeptide tyrosine in the rat adrenal gland–immunohistochemical and in situ hybridization studies. Neuroscience 24:337–349PubMed
93.
go back to reference Schatzberg F, Schildkraut JJ (1995) Recent studies on norepinephrine systems in mood disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. Raven Press, New York, pp 911–920 Schatzberg F, Schildkraut JJ (1995) Recent studies on norepinephrine systems in mood disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. Raven Press, New York, pp 911–920
94.
go back to reference Sepehry AA, Lee PE, Hsiung GY, Beattie BL, Jacova C (2012) Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: a meta-analysis of depression and cognitive outcomes. Drugs Aging 29:793–806. doi:10.1007/s40266-012-0012-5 PubMed Sepehry AA, Lee PE, Hsiung GY, Beattie BL, Jacova C (2012) Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: a meta-analysis of depression and cognitive outcomes. Drugs Aging 29:793–806. doi:10.​1007/​s40266-012-0012-5 PubMed
95.
go back to reference Shi TJ, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Gluck L, Deyev SM, Zvyagin AV, Schulz S, Hokfelt T (2014) Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 10:12. doi:10.1186/1744-8069-10-12 PubMedCentralPubMed Shi TJ, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Gluck L, Deyev SM, Zvyagin AV, Schulz S, Hokfelt T (2014) Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 10:12. doi:10.​1186/​1744-8069-10-12 PubMedCentralPubMed
99.
go back to reference Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosc 26:467–478. doi:10.1523/JNEUROSCI.4265-05.2006 Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosc 26:467–478. doi:10.​1523/​JNEUROSCI.​4265-05.​2006
100.
101.
go back to reference Thoss VS, Perez J, Duc D, Hoyer D (1995) Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain. Neuropharmacology 34:1673–1688PubMed Thoss VS, Perez J, Duc D, Hoyer D (1995) Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain. Neuropharmacology 34:1673–1688PubMed
102.
103.
go back to reference Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428PubMed Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428PubMed
104.
go back to reference Toppila J, Niittymaki P, Porkka-Heiskanen T, Stenberg D (2000) Intracerebroventricular and locus coeruleus microinjections of somatostatin antagonist decrease REM sleep in rats. Pharmacol Biochem Behav 66:721–727PubMed Toppila J, Niittymaki P, Porkka-Heiskanen T, Stenberg D (2000) Intracerebroventricular and locus coeruleus microinjections of somatostatin antagonist decrease REM sleep in rats. Pharmacol Biochem Behav 66:721–727PubMed
106.
go back to reference Ueda S, Aikawa M, Ishizuya-Oka A, Yamaoka S, Koibuchi N, Yoshimoto K (2000) Age-related dopamine deficiency in the mesostriatal dopamine system of zitter mutant rats: regional fiber vulnerability in the striatum and the olfactory tubercle. Neuroscience 95:389–398PubMed Ueda S, Aikawa M, Ishizuya-Oka A, Yamaoka S, Koibuchi N, Yoshimoto K (2000) Age-related dopamine deficiency in the mesostriatal dopamine system of zitter mutant rats: regional fiber vulnerability in the striatum and the olfactory tubercle. Neuroscience 95:389–398PubMed
107.
go back to reference Vale W, Brazeau P, Rivier C, Brown M, Boss B, Rivier J, Burgus R, Ling N, Guillemin R (1975) Somatostatin. Recent Prog Horm Res 31:365–397PubMed Vale W, Brazeau P, Rivier C, Brown M, Boss B, Rivier J, Burgus R, Ling N, Guillemin R (1975) Somatostatin. Recent Prog Horm Res 31:365–397PubMed
108.
go back to reference van de Nes JA, Konermann S, Nafe R, Swaab DF (2006) Beta-protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients. Acta Neuropathol 111:126–138. doi:10.1007/s00401-005-0018-8 PubMed van de Nes JA, Konermann S, Nafe R, Swaab DF (2006) Beta-protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients. Acta Neuropathol 111:126–138. doi:10.​1007/​s00401-005-0018-8 PubMed
109.
go back to reference van Luijtelaar MG, Steinbusch HW, Tonnaer JA (1988) Aberrant morphology of serotonergic fibers in the forebrain of the aged rat. Neurosci Lett 95:93–96PubMed van Luijtelaar MG, Steinbusch HW, Tonnaer JA (1988) Aberrant morphology of serotonergic fibers in the forebrain of the aged rat. Neurosci Lett 95:93–96PubMed
110.
go back to reference van Luijtelaar MG, Tonnaer JA, Steinbusch HW (1992) Aging of the serotonergic system in the rat forebrain: an immunocytochemical and neurochemical study. Neurobiol Aging 13:201–215PubMed van Luijtelaar MG, Tonnaer JA, Steinbusch HW (1992) Aging of the serotonergic system in the rat forebrain: an immunocytochemical and neurochemical study. Neurobiol Aging 13:201–215PubMed
111.
go back to reference Vepsalainen S, Helisalmi S, Koivisto AM, Tapaninen T, Hiltunen M, Soininen H (2007) Somatostatin genetic variants modify the risk for Alzheimer’s disease among Finnish patients. J Neurol 254:1504–1508. doi:10.1007/s00415-007-0539-2 PubMed Vepsalainen S, Helisalmi S, Koivisto AM, Tapaninen T, Hiltunen M, Soininen H (2007) Somatostatin genetic variants modify the risk for Alzheimer’s disease among Finnish patients. J Neurol 254:1504–1508. doi:10.​1007/​s00415-007-0539-2 PubMed
113.
go back to reference Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L’Heritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J (2000) Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci 12:3761–3770PubMed Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L’Heritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J (2000) Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci 12:3761–3770PubMed
115.
go back to reference Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345PubMed Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345PubMed
116.
go back to reference Xu ZQ, Shi TJ, Hökfelt T (1998) Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 392:227–251PubMed Xu ZQ, Shi TJ, Hökfelt T (1998) Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 392:227–251PubMed
118.
go back to reference Yeung M, Treit D (2012) The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharmacol Biochem Behav 101:88–92. doi:10.1016/j.pbb.2011.12.012 PubMed Yeung M, Treit D (2012) The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharmacol Biochem Behav 101:88–92. doi:10.​1016/​j.​pbb.​2011.​12.​012 PubMed
119.
go back to reference Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMed Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMed
Metadata
Title
Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer’s disease
Authors
Csaba Ádori
Laura Glück
Swapnali Barde
Takashi Yoshitake
Gabor G. Kovacs
Jan Mulder
Zsófia Maglóczky
László Havas
Kata Bölcskei
Nicholas Mitsios
Mathias Uhlén
János Szolcsányi
Jan Kehr
Annica Rönnbäck
Thue Schwartz
Jens F. Rehfeld
Tibor Harkany
Miklós Palkovits
Stefan Schulz
Tomas Hökfelt
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 4/2015
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-015-1394-3

Other articles of this Issue 4/2015

Acta Neuropathologica 4/2015 Go to the issue