Skip to main content
Top
Published in: Acta Neuropathologica 2/2013

01-02-2013 | Original Paper

Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease

Authors: Lara Wahlster, Muriel Arimon, Navine Nasser-Ghodsi, Kathryn Leigh Post, Alberto Serrano-Pozo, Kengo Uemura, Oksana Berezovska

Published in: Acta Neuropathologica | Issue 2/2013

Login to get access

Abstract

Accumulation of amyloid-β (Aβ) and neurofibrillary tangles in the brain, inflammation and synaptic and neuronal loss are some of the major neuropathological hallmarks of Alzheimer’s disease (AD). While genetic mutations in amyloid precursor protein and presenilin-1 and -2 (PS1 and PS2) genes cause early-onset familial AD, the etiology of sporadic AD is not fully understood. Our current study shows that changes in conformation of endogenous wild-type PS1, similar to those found with mutant PS1, occur in sporadic AD brain and during normal aging. Using a mouse model of Alzheimer’s disease (Tg2576) that overexpresses the Swedish mutation of amyloid precursor protein but has normal levels of endogenous wild-type presenilin, we report that the percentage of PS1 in a pathogenic conformation increases with age. Importantly, we found that this PS1 conformational shift is associated with amyloid pathology and precedes amyloid-β deposition in the brain. Furthermore, we found that oxidative stress, a common stress characteristic of aging and AD, causes pathogenic PS1 conformational change in neurons in vitro, which is accompanied by increased Aβ42/40 ratio. The results of this study provide important information about the timeline of pathogenic changes in PS1 conformation during aging and suggest that structural changes in PS1/γ-secretase may represent a molecular mechanism by which oxidative stress triggers amyloid-β accumulation in aging and in sporadic AD brain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Annaert WG, Esselens C, Baert V et al (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32(4):579–589PubMedCrossRef Annaert WG, Esselens C, Baert V et al (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32(4):579–589PubMedCrossRef
2.
go back to reference Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42(9):1681–1688PubMedCrossRef Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42(9):1681–1688PubMedCrossRef
3.
go back to reference Berezovska O, Frosch M, McLean P et al (1999) The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Brain Res Mol Brain Res 69(2):273–280PubMedCrossRef Berezovska O, Frosch M, McLean P et al (1999) The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Brain Res Mol Brain Res 69(2):273–280PubMedCrossRef
4.
go back to reference Berezovska O, Lleo A, Herl LD et al (2005) Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 25(11):3009–3017PubMedCrossRef Berezovska O, Lleo A, Herl LD et al (2005) Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 25(11):3009–3017PubMedCrossRef
5.
go back to reference Borchelt DR, Thinakaran G, Eckman CB et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5):1005–1013PubMedCrossRef Borchelt DR, Thinakaran G, Eckman CB et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5):1005–1013PubMedCrossRef
6.
go back to reference Bosco DA, Morfini G, Karabacak NM et al (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci 13(11):1396–1403PubMedCrossRef Bosco DA, Morfini G, Karabacak NM et al (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci 13(11):1396–1403PubMedCrossRef
7.
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropath 82(4):239–259PubMedCrossRef Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropath 82(4):239–259PubMedCrossRef
8.
go back to reference Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27(3):325–355PubMedCrossRef Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27(3):325–355PubMedCrossRef
9.
go back to reference Burke WJ, Roccaforte WH, Wengel SP et al (1993) L-deprenyl in the treatment of mild dementia of the Alzheimer type: results of a 15-month trial. J Am Geriatr Soc 41(11):1219–1225PubMed Burke WJ, Roccaforte WH, Wengel SP et al (1993) L-deprenyl in the treatment of mild dementia of the Alzheimer type: results of a 15-month trial. J Am Geriatr Soc 41(11):1219–1225PubMed
10.
go back to reference Butterfield DA, Reed T, Sultana R (2011) Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radical Res 45(1):59–72CrossRef Butterfield DA, Reed T, Sultana R (2011) Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radical Res 45(1):59–72CrossRef
11.
go back to reference Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med 3(1):67–72PubMedCrossRef Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med 3(1):67–72PubMedCrossRef
12.
go back to reference Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7):2070–2075PubMedCrossRef Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7):2070–2075PubMedCrossRef
13.
go back to reference De Strooper B, Saftig P, Craessaerts K et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390PubMedCrossRef De Strooper B, Saftig P, Craessaerts K et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390PubMedCrossRef
14.
go back to reference De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107PubMedCrossRef De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107PubMedCrossRef
15.
go back to reference DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464PubMedCrossRef DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464PubMedCrossRef
16.
go back to reference Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247PubMedCrossRef Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247PubMedCrossRef
17.
go back to reference Galasko DR, Peskind E, Clark CM et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69(7):836–841 Galasko DR, Peskind E, Clark CM et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69(7):836–841
18.
go back to reference Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M et al (2006) Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol 65(11):1082–1089PubMedCrossRef Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M et al (2006) Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol 65(11):1082–1089PubMedCrossRef
19.
go back to reference Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 65(11):1082–1089 Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 65(11):1082–1089
20.
go back to reference Gomez-Isla T, Price JL, McKeel DW et al (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500PubMed Gomez-Isla T, Price JL, McKeel DW et al (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500PubMed
21.
go back to reference Guareschi S, Cova E, Cereda C et al (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci USA 109(13):5074–5079PubMedCrossRef Guareschi S, Cova E, Cereda C et al (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci USA 109(13):5074–5079PubMedCrossRef
22.
go back to reference Guix FX, Wahle T, Vennekens K et al (2012) Modification of gamma-secretase by nitrosative stress links neuronal aging to sporadic Alzheimer’s disease. EMBO Mol Med 4(7):660–673PubMedCrossRef Guix FX, Wahle T, Vennekens K et al (2012) Modification of gamma-secretase by nitrosative stress links neuronal aging to sporadic Alzheimer’s disease. EMBO Mol Med 4(7):660–673PubMedCrossRef
23.
go back to reference Gwon AR, Park JS, Arumugam TV et al. (2012) Oxidative lipid modification of nicastrin enhances amyloidogenic gamma-secretase activity in Alzheimer’s disease. Aging Cell 11(4):559–568 Gwon AR, Park JS, Arumugam TV et al. (2012) Oxidative lipid modification of nicastrin enhances amyloidogenic gamma-secretase activity in Alzheimer’s disease. Aging Cell 11(4):559–568
24.
go back to reference Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Aging Cell 11(4):559–568 Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Aging Cell 11(4):559–568
25.
go back to reference Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102PubMedCrossRef Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102PubMedCrossRef
26.
go back to reference Hyman BT (2011) Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch Neurol 68(8):1062–1064PubMedCrossRef Hyman BT (2011) Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch Neurol 68(8):1062–1064PubMedCrossRef
27.
go back to reference Ingelsson M, Fukumoto H, Newell KL et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931PubMedCrossRef Ingelsson M, Fukumoto H, Newell KL et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931PubMedCrossRef
28.
go back to reference Isoo N, Sato C, Miyashita H et al (2007) Abeta42 overproduction associated with structural changes in the catalytic pore of gamma-secretase: common effects of Pen-2 N-terminal elongation and fenofibrate. J Biol Chem 282(17):12388–12396PubMedCrossRef Isoo N, Sato C, Miyashita H et al (2007) Abeta42 overproduction associated with structural changes in the catalytic pore of gamma-secretase: common effects of Pen-2 N-terminal elongation and fenofibrate. J Biol Chem 282(17):12388–12396PubMedCrossRef
29.
go back to reference Jack CR Jr, Lowe VJ, Weigand SD et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365PubMedCrossRef Jack CR Jr, Lowe VJ, Weigand SD et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365PubMedCrossRef
30.
go back to reference Jones PB, Rozkalne A, Meyer-Luehmann M et al (2008) Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt 13(1):014008PubMedCrossRef Jones PB, Rozkalne A, Meyer-Luehmann M et al (2008) Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt 13(1):014008PubMedCrossRef
31.
go back to reference Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol 64(1):4–14PubMedCrossRef Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol 64(1):4–14PubMedCrossRef
33.
go back to reference Kawarabayashi T, Younkin LH, Saido TC et al (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21(2):372–381PubMed Kawarabayashi T, Younkin LH, Saido TC et al (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21(2):372–381PubMed
34.
go back to reference Kertesz A, McMonagle P, Blair M et al (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):1996–2005PubMedCrossRef Kertesz A, McMonagle P, Blair M et al (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):1996–2005PubMedCrossRef
35.
go back to reference Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106(10):4012–4017PubMedCrossRef Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106(10):4012–4017PubMedCrossRef
36.
go back to reference Kuchibhotla KV, Goldman ST, Lattarulo CR et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225PubMedCrossRef Kuchibhotla KV, Goldman ST, Lattarulo CR et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225PubMedCrossRef
37.
go back to reference Kuperstein I, Broersen K, Benilova I et al (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J 29(19):3408–3420PubMedCrossRef Kuperstein I, Broersen K, Benilova I et al (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J 29(19):3408–3420PubMedCrossRef
38.
go back to reference Lakowicz JR (1988) Principles of frequency-domain fluorescence spectroscopy and applications to cell membranes. Sub-cellular Biochem 13:89–126CrossRef Lakowicz JR (1988) Principles of frequency-domain fluorescence spectroscopy and applications to cell membranes. Sub-cellular Biochem 13:89–126CrossRef
39.
go back to reference Lakowicz JR, Szmacinski H, Nowaczyk K et al (1992) Fluorescence lifetime imaging. Anal Biochem 202(2):316–330PubMedCrossRef Lakowicz JR, Szmacinski H, Nowaczyk K et al (1992) Fluorescence lifetime imaging. Anal Biochem 202(2):316–330PubMedCrossRef
40.
go back to reference Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357PubMedCrossRef Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357PubMedCrossRef
41.
go back to reference Lewczuk P, Esselmann H, Otto M et al (2004) Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 25(3):273–281PubMedCrossRef Lewczuk P, Esselmann H, Otto M et al (2004) Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 25(3):273–281PubMedCrossRef
42.
go back to reference Lleo A, Berezovska O, Herl L et al (2004) Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nature Med 10(10):1065–1066PubMedCrossRef Lleo A, Berezovska O, Herl L et al (2004) Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nature Med 10(10):1065–1066PubMedCrossRef
43.
go back to reference Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85(14):3036–3040PubMedCrossRef Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85(14):3036–3040PubMedCrossRef
44.
go back to reference Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4PubMedCrossRef Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4PubMedCrossRef
45.
go back to reference Masliah E, Mallory M, Hansen L et al (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43(1):192–197PubMedCrossRef Masliah E, Mallory M, Hansen L et al (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43(1):192–197PubMedCrossRef
46.
go back to reference McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944PubMedCrossRef McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944PubMedCrossRef
47.
go back to reference McKhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on frontotemporal dementia and Pick’s disease. Archives Neurol 58(11):1803–1809CrossRef McKhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on frontotemporal dementia and Pick’s disease. Archives Neurol 58(11):1803–1809CrossRef
48.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7(3):263–269CrossRef McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7(3):263–269CrossRef
49.
go back to reference McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ (2003) In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci 23(6):2212–2217PubMed McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ (2003) In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci 23(6):2212–2217PubMed
50.
go back to reference Morishima-Kawashima M, Ihara Y (2002) Alzheimer’s disease: beta-Amyloid protein and tau. J Neurosci Res 70(3):392–401PubMedCrossRef Morishima-Kawashima M, Ihara Y (2002) Alzheimer’s disease: beta-Amyloid protein and tau. J Neurosci Res 70(3):392–401PubMedCrossRef
51.
go back to reference NIA-RI (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18(4 Suppl):S1–S2 NIA-RI (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18(4 Suppl):S1–S2
52.
go back to reference Placanica L, Zhu L, Li YM (2009) Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS One 4(4):e5088PubMedCrossRef Placanica L, Zhu L, Li YM (2009) Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS One 4(4):e5088PubMedCrossRef
53.
go back to reference Pratico D, Uryu K, Leight S et al (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21(12):4183–4187PubMed Pratico D, Uryu K, Leight S et al (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21(12):4183–4187PubMed
54.
go back to reference Rodrigue KM, Kennedy KM, Park DC (2009) Beta-amyloid deposition and the aging brain. Neuropsychol Rev 19(4):436–450PubMedCrossRef Rodrigue KM, Kennedy KM, Park DC (2009) Beta-amyloid deposition and the aging brain. Neuropsychol Rev 19(4):436–450PubMedCrossRef
55.
go back to reference Saito T, Suemoto T, Brouwers N et al (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14(8):1023–1032PubMedCrossRef Saito T, Suemoto T, Brouwers N et al (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14(8):1023–1032PubMedCrossRef
56.
go back to reference Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease Cooperative Study. NE J Med 336(17):1216–1222CrossRef Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease Cooperative Study. NE J Med 336(17):1216–1222CrossRef
57.
go back to reference Savonenko A, Xu GM, Melnikova T et al (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18(3):602–617PubMedCrossRef Savonenko A, Xu GM, Melnikova T et al (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18(3):602–617PubMedCrossRef
58.
go back to reference Sayre LM, Zelasko DA, Harris PL et al (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097PubMedCrossRef Sayre LM, Zelasko DA, Harris PL et al (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097PubMedCrossRef
59.
go back to reference Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2(8):864–870PubMedCrossRef Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2(8):864–870PubMedCrossRef
60.
go back to reference Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766PubMed
61.
go back to reference Serneels L, Van Biervliet J, Craessaerts K et al (2009) gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324(5927):639–642PubMedCrossRef Serneels L, Van Biervliet J, Craessaerts K et al (2009) gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324(5927):639–642PubMedCrossRef
62.
go back to reference Serrano-Pozo A, Mielke ML, Gomez-Isla T et al (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Amer J Pathol 179(3):1373–1384CrossRef Serrano-Pozo A, Mielke ML, Gomez-Isla T et al (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Amer J Pathol 179(3):1373–1384CrossRef
63.
go back to reference Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimer’s Dis: JAD 19(1):341–353 Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimer’s Dis: JAD 19(1):341–353
64.
go back to reference Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580PubMedCrossRef Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580PubMedCrossRef
65.
go back to reference Texido L, Martin-Satue M, Alberdi E et al (2011) Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium 49(3):184–190PubMedCrossRef Texido L, Martin-Satue M, Alberdi E et al (2011) Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium 49(3):184–190PubMedCrossRef
66.
go back to reference Thinakaran G, Borchelt DR, Lee MK et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17(1):181–190PubMedCrossRef Thinakaran G, Borchelt DR, Lee MK et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17(1):181–190PubMedCrossRef
67.
go back to reference Uemura K, Farner KC, Nasser-Ghodsi N et al (2011) Reciprocal relationship between APP positioning relative to the membrane and PS1 conformation. Mol Neurodegener 6(1):15PubMedCrossRef Uemura K, Farner KC, Nasser-Ghodsi N et al (2011) Reciprocal relationship between APP positioning relative to the membrane and PS1 conformation. Mol Neurodegener 6(1):15PubMedCrossRef
68.
go back to reference Uemura K, Lill CM, Li X, Peters JA et al (2009) Allosteric modulation of PS1/gamma-secretase conformation correlates with amyloid beta (42/40) ratio. PLoS One 4(11):e7893PubMedCrossRef Uemura K, Lill CM, Li X, Peters JA et al (2009) Allosteric modulation of PS1/gamma-secretase conformation correlates with amyloid beta (42/40) ratio. PLoS One 4(11):e7893PubMedCrossRef
69.
go back to reference Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099PubMedCrossRef Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099PubMedCrossRef
70.
go back to reference Wiltfang J, Esselmann H, Bibl M et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101(4):1053–1059PubMedCrossRef Wiltfang J, Esselmann H, Bibl M et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101(4):1053–1059PubMedCrossRef
71.
go back to reference Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8(2):136–140PubMedCrossRef Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8(2):136–140PubMedCrossRef
72.
go back to reference Wolfe MS, Xia W, Ostaszewski BL, Diehl TS et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398(6727):513–517PubMedCrossRef Wolfe MS, Xia W, Ostaszewski BL, Diehl TS et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398(6727):513–517PubMedCrossRef
73.
go back to reference Yanagida K, Okochi M, Tagami S et al (2009) The 28-amino acid form of an APLP1-derived Abeta-like peptide is a surrogate marker for Abeta42 production in the central nervous system. EMBO Mol Med 1(4):223–235PubMedCrossRef Yanagida K, Okochi M, Tagami S et al (2009) The 28-amino acid form of an APLP1-derived Abeta-like peptide is a surrogate marker for Abeta42 production in the central nervous system. EMBO Mol Med 1(4):223–235PubMedCrossRef
Metadata
Title
Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease
Authors
Lara Wahlster
Muriel Arimon
Navine Nasser-Ghodsi
Kathryn Leigh Post
Alberto Serrano-Pozo
Kengo Uemura
Oksana Berezovska
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2013
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-1065-6

Other articles of this Issue 2/2013

Acta Neuropathologica 2/2013 Go to the issue