Skip to main content
Top
Published in: Acta Neuropathologica 2/2012

01-08-2012 | Original Paper

TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1

Authors: Pritha Majumder, Yi-Ting Chen, Jayarama Krishnan Bose, Cheng-Chun Wu, Wei-Cheng Cheng, Sin-Jhong Cheng, Yen-Hsin Fang, Ying-Ling Chen, Kuen-Jer Tsai, Cheng-Chang Lien, Che-Kun James Shen

Published in: Acta Neuropathologica | Issue 2/2012

Login to get access

Abstract

Impairment of learning and memory is a significant pathological feature of many neurodegenerative diseases including FTLD-TDP. Appropriate regulation and fine tuning of spinogenesis of the dendrites, which is an integral part of the learning/memory program of the mammalian brain, are essential for the normal function of the hippocampal neurons. TDP-43 is a nucleic acid-binding protein implicated in multi-cellular functions and in the pathogenesis of a range of neurodegenerative diseases including FTLD-TDP and ALS. We have combined the use of single-cell dye injection, shRNA knockdown, plasmid rescue, immunofluorescence staining, Western blot analysis and patch clamp electrophysiological measurement of primary mouse hippocampal neurons in culture to study the functional role of TDP-43 in mammalian spinogenesis. We found that depletion of TDP-43 leads to an increase in the number of protrusions/spines as well as the percentage of matured spines among the protrusions. Significantly, the knockdown of TDP-43 also increases the level of Rac1 and its activated form GTP-Rac1, a known positive regulator of spinogenesis. Clustering of the AMPA receptors on the dendritic surface and neuronal firing are also induced by depletion of TDP-43. Furthermore, use of an inhibitor of Rac1 activation negatively regulated spinogenesis of control hippocampal neurons as well as TDP-43-depleted hippocampal neurons. Mechanistically, RT-PCR assay and cycloheximide chase experiments have indicated that increases in Rac1 protein upon TDP-43 depletion is regulated at the translational level. These data together establish that TDP-43 is an upstream regulator of spinogenesis in part through its action on the Rac1 → GTP-Rac1 → AMPAR pathway. This study provides the first evidence connecting TDP-43 with the GTP-Rac1 → AMPAR regulatory pathway of spinogenesis. It establishes that mis-metabolism of TDP-43, as occurs in neurodegenerative diseases with TDP-43 proteinopathies, e.g., FTLD-TDP, would alter its homeostatic cellular concentration, thus leading to impairment of hippocampal plasticity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRef Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRef
2.
go back to reference Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function Neuron 35:1019–1027 Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function Neuron 35:1019–1027
3.
go back to reference Bose JK, Wang I-F, Li H, Tarn W-Y, Shen C-KJ (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J BiolChem 283:28852–28859 Bose JK, Wang I-F, Li H, Tarn W-Y, Shen C-KJ (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J BiolChem 283:28852–28859
4.
go back to reference Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448PubMedCrossRef Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448PubMedCrossRef
5.
go back to reference Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67PubMedCrossRef Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67PubMedCrossRef
6.
go back to reference Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052PubMedCrossRef Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052PubMedCrossRef
7.
go back to reference Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878PubMedCrossRef Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878PubMedCrossRef
8.
go back to reference Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34PubMedCrossRef Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34PubMedCrossRef
9.
go back to reference Chen Y, Rex CS, Rice CJ et al (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 107:13123–13128PubMedCrossRef Chen Y, Rex CS, Rice CJ et al (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 107:13123–13128PubMedCrossRef
10.
go back to reference Chen-Plotkin AS, Geser F, Plotkin JB et al (2008) Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 17:1349–1362PubMedCrossRef Chen-Plotkin AS, Geser F, Plotkin JB et al (2008) Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 17:1349–1362PubMedCrossRef
11.
go back to reference Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220PubMedCrossRef Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220PubMedCrossRef
12.
go back to reference Colombrita C, Onesto E, Megiorni F et al (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647PubMedCrossRef Colombrita C, Onesto E, Megiorni F et al (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647PubMedCrossRef
13.
14.
go back to reference Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef
15.
go back to reference Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205PubMedCrossRef Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205PubMedCrossRef
16.
go back to reference Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583:1586–1592PubMedCrossRef Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583:1586–1592PubMedCrossRef
17.
go back to reference Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64PubMedCrossRef Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64PubMedCrossRef
18.
go back to reference Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32:9–16PubMedCrossRef Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32:9–16PubMedCrossRef
19.
go back to reference Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73PubMedCrossRef Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73PubMedCrossRef
20.
go back to reference Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant Huntington involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340–350PubMedCrossRef Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant Huntington involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340–350PubMedCrossRef
21.
go back to reference Haditsch U, Leone DP, Farinelli M et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419PubMedCrossRef Haditsch U, Leone DP, Farinelli M et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419PubMedCrossRef
22.
go back to reference Hayashi ML, Choi SY, Rao BS et al (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron 43:773–787CrossRef Hayashi ML, Choi SY, Rao BS et al (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron 43:773–787CrossRef
23.
go back to reference Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888PubMedCrossRef Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888PubMedCrossRef
24.
go back to reference Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983PubMedCrossRef Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983PubMedCrossRef
25.
go back to reference Iguchi Y, Katsuno M, Niwa J et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059–22066PubMedCrossRef Iguchi Y, Katsuno M, Niwa J et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059–22066PubMedCrossRef
26.
go back to reference Impey S, Davare M, Lasiek A et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156PubMedCrossRef Impey S, Davare M, Lasiek A et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156PubMedCrossRef
27.
28.
go back to reference Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315PubMedCrossRef Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315PubMedCrossRef
29.
go back to reference Kang M-G, Guo Y, Huganir RL (2009) AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. PNAS 106:3549–3554PubMedCrossRef Kang M-G, Guo Y, Huganir RL (2009) AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. PNAS 106:3549–3554PubMedCrossRef
30.
go back to reference Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRef Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRef
31.
go back to reference Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRef Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRef
32.
go back to reference Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33:741–750PubMedCrossRef Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33:741–750PubMedCrossRef
33.
go back to reference Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068PubMed Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068PubMed
34.
go back to reference M-j Lin, Cheng C-W, Shen C-K (2011) Neuronal function and dysfunction of Drosophila dTDP. PLoS One 6:e20371CrossRef M-j Lin, Cheng C-W, Shen C-K (2011) Neuronal function and dysfunction of Drosophila dTDP. PLoS One 6:e20371CrossRef
35.
go back to reference Linseman DA, Loucks FA (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13:657–676PubMedCrossRef Linseman DA, Loucks FA (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13:657–676PubMedCrossRef
37.
go back to reference Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRef Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRef
38.
go back to reference Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef
39.
go back to reference Menna E, Disanza A, Cagnoli C et al (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7:1–17CrossRef Menna E, Disanza A, Cagnoli C et al (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7:1–17CrossRef
40.
go back to reference Mishra M, Paunesku T, Woloschak GE et al (2007) Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114:81–94PubMedCrossRef Mishra M, Paunesku T, Woloschak GE et al (2007) Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114:81–94PubMedCrossRef
41.
go back to reference Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef
42.
go back to reference Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D (2002) Activity-induced changes of spine morphology. Hippocampus 12:585–591PubMedCrossRef Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D (2002) Activity-induced changes of spine morphology. Hippocampus 12:585–591PubMedCrossRef
43.
go back to reference Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines annual review. Physiology 64:313–353CrossRef Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines annual review. Physiology 64:313–353CrossRef
44.
go back to reference Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via b1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11:260–273PubMedCrossRef Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via b1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11:260–273PubMedCrossRef
45.
go back to reference Pilpel Y, Segal M (2004) Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 19:3151–3164PubMedCrossRef Pilpel Y, Segal M (2004) Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 19:3151–3164PubMedCrossRef
46.
go back to reference Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neuroscie 14:459–468CrossRef Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neuroscie 14:459–468CrossRef
47.
go back to reference Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetized rat. Neuroscience 128:251–262PubMedCrossRef Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetized rat. Neuroscience 128:251–262PubMedCrossRef
48.
go back to reference Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedCrossRef Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedCrossRef
50.
go back to reference Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847PubMedCrossRef Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847PubMedCrossRef
51.
go back to reference Spires TL, Grote HE, Garry S et al (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799–2807PubMedCrossRef Spires TL, Grote HE, Garry S et al (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799–2807PubMedCrossRef
52.
go back to reference Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef
53.
go back to reference Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101PubMedCrossRef Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101PubMedCrossRef
54.
go back to reference Tashiro A, Yuste R (2004) Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26:429–440PubMedCrossRef Tashiro A, Yuste R (2004) Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26:429–440PubMedCrossRef
55.
go back to reference Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458PubMedCrossRef Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458PubMedCrossRef
56.
go back to reference Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRef Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRef
57.
go back to reference von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531PubMedCrossRef von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531PubMedCrossRef
58.
go back to reference Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139PubMedCrossRef Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139PubMedCrossRef
59.
go back to reference Wang IF, Wu LS, Chang HY, Shen CK (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105:797–806PubMedCrossRef Wang IF, Wu LS, Chang HY, Shen CK (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105:797–806PubMedCrossRef
60.
go back to reference Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485PubMedCrossRef Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485PubMedCrossRef
61.
go back to reference Wiens KM, Lin H, Liao D (2005) Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis. J Neurosci 25:10627–10636PubMedCrossRef Wiens KM, Lin H, Liao D (2005) Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis. J Neurosci 25:10627–10636PubMedCrossRef
62.
go back to reference Wils HG, Kleinberger J, Janssens S et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3853–3863CrossRef Wils HG, Kleinberger J, Janssens S et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3853–3863CrossRef
63.
go back to reference Wu G-Y, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226PubMedCrossRef Wu G-Y, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226PubMedCrossRef
64.
go back to reference Xiao S, Sanelli T, Dib S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180PubMedCrossRef Xiao S, Sanelli T, Dib S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180PubMedCrossRef
65.
go back to reference Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5:e15878PubMedCrossRef Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5:e15878PubMedCrossRef
66.
go back to reference Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388PubMedCrossRef Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388PubMedCrossRef
67.
go back to reference Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61:247–258PubMedCrossRef Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61:247–258PubMedCrossRef
68.
go back to reference Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102PubMedCrossRef Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102PubMedCrossRef
Metadata
Title
TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1
Authors
Pritha Majumder
Yi-Ting Chen
Jayarama Krishnan Bose
Cheng-Chun Wu
Wei-Cheng Cheng
Sin-Jhong Cheng
Yen-Hsin Fang
Ying-Ling Chen
Kuen-Jer Tsai
Cheng-Chang Lien
Che-Kun James Shen
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-1006-4

Other articles of this Issue 2/2012

Acta Neuropathologica 2/2012 Go to the issue