Skip to main content
Top
Published in: Acta Neuropathologica 5/2012

01-11-2012 | Original Paper

Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: a clinicopathologic study

Authors: Mari Tada, Elizabeth A. Coon, Alexander P. Osmand, Patricia A. Kirby, Wayne Martin, Marguerite Wieler, Atsushi Shiga, Hiroe Shirasaki, Masayoshi Tada, Takao Makifuchi, Mitsunori Yamada, Akiyoshi Kakita, Masatoyo Nishizawa, Hitoshi Takahashi, Henry L. Paulson

Published in: Acta Neuropathologica | Issue 5/2012

Login to get access

Abstract

We report a retrospective case series of four patients with genetically confirmed Huntington’s disease (HD) and sporadic amyotrophic lateral sclerosis (ALS), examining the brain and spinal cord in two cases. Neuropathological assessment included a polyglutamine recruitment method to detect sites of active polyglutamine aggregation, and biochemical and immunohistochemical assessment of TDP-43 pathology. The clinical sequence of HD and ALS varied, with the onset of ALS occurring after the mid-50’s in all cases. Neuropathologic features of HD and ALS coexisted in both cases examined pathologically: neuronal loss and gliosis in the neostriatum and upper and lower motor neurons, with Bunina bodies and ubiquitin-immunoreactive skein-like inclusions in remaining lower motor neurons. One case showed relatively early HD pathology while the other was advanced. Expanded polyglutamine-immunoreactive inclusions and TDP-43-immunoreactive inclusions were widespread in many regions of the CNS, including the motor cortex and spinal anterior horn. Although these two different proteinaceous inclusions coexisted in a small number of neurons, the two proteins did not co-localize within inclusions. The regional distribution of TDP-43-immunoreactive inclusions in the cerebral cortex partly overlapped with that of expanded polyglutamine-immunoreactive inclusions. In the one case examined by TDP-43 immunoblotting, similar TDP-43 isoforms were observed as in ALS. Our findings suggest the possibility that a rare subset of older HD patients is prone to develop features of ALS with an atypical TDP-43 distribution that resembles that of aggregated mutant huntingtin. Age-dependent neuronal dysfunction induced by mutant polyglutamine protein expression may contribute to later-life development of TDP-43 associated motor neuron disease in a small subset of patients with HD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRef Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRef
2.
go back to reference Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21:904–919PubMedCrossRef Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21:904–919PubMedCrossRef
3.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRef DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRef
4.
go back to reference Elden AC, Kim HJ, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075PubMedCrossRef Elden AC, Kim HJ, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075PubMedCrossRef
5.
go back to reference Furtado S, Payami H, Lockhart PJ et al (2004) Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 19:622–629PubMedCrossRef Furtado S, Payami H, Lockhart PJ et al (2004) Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 19:622–629PubMedCrossRef
6.
go back to reference Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755PubMedCrossRef Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755PubMedCrossRef
7.
go back to reference Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189PubMedCrossRef Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189PubMedCrossRef
8.
go back to reference Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70PubMedCrossRef Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70PubMedCrossRef
9.
go back to reference Hedreen JC, Roos RAC (2003) Huntington’s disease. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 229–241 Hedreen JC, Roos RAC (2003) Huntington’s disease. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 229–241
10.
go back to reference Heng MY, Duong DK, Albin RL et al (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19:3702–3720PubMedCrossRef Heng MY, Duong DK, Albin RL et al (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19:3702–3720PubMedCrossRef
11.
go back to reference Herndon ES, Hladik CL, Shang P, Burns DK, Raisanen J, White CL 3rd (2009) Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 68:250–261PubMedCrossRef Herndon ES, Hladik CL, Shang P, Burns DK, Raisanen J, White CL 3rd (2009) Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 68:250–261PubMedCrossRef
12.
go back to reference Infante J, Berciano J, Volpini V et al (2004) Spinocerebellar ataxia type 2 with Levodopa-responsive Parkinsonism culminating in motor neuron disease. Mov Disord 19:848–852PubMedCrossRef Infante J, Berciano J, Volpini V et al (2004) Spinocerebellar ataxia type 2 with Levodopa-responsive Parkinsonism culminating in motor neuron disease. Mov Disord 19:848–852PubMedCrossRef
13.
go back to reference Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574PubMedCrossRef Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574PubMedCrossRef
14.
go back to reference Kanai K, Kuwabara S, Sawai S et al (2008) Genetically confirmed Huntington’s disease masquerading as motor neuron disease. Mov Disord 23:748–751PubMedCrossRef Kanai K, Kuwabara S, Sawai S et al (2008) Genetically confirmed Huntington’s disease masquerading as motor neuron disease. Mov Disord 23:748–751PubMedCrossRef
15.
go back to reference Kato S, Shaw P, Wood-Allum C, Leigh PN (2003) Amyotrophic lateral sclerosis. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 350–368 Kato S, Shaw P, Wood-Allum C, Leigh PN (2003) Amyotrophic lateral sclerosis. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 350–368
16.
17.
go back to reference Lee T, Li YR, Chesi A et al (2011) Evaluating the prevalence of polyglutamine repeat expansions in amyotrophic lateral sclerosis. Neurology 76:2062–2065PubMedCrossRef Lee T, Li YR, Chesi A et al (2011) Evaluating the prevalence of polyglutamine repeat expansions in amyotrophic lateral sclerosis. Neurology 76:2062–2065PubMedCrossRef
18.
go back to reference Mackenzie IR, Baborie A, Pickering-Brown S et al (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549PubMedCrossRef Mackenzie IR, Baborie A, Pickering-Brown S et al (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549PubMedCrossRef
19.
go back to reference Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol 122:111–113PubMedCrossRef Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol 122:111–113PubMedCrossRef
20.
go back to reference Nanetti L, Fancellu R, Tomasello C, Gellera C, Pareyson D, Mariotti C (2009) Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J Neurol 256:1926–1928PubMedCrossRef Nanetti L, Fancellu R, Tomasello C, Gellera C, Pareyson D, Mariotti C (2009) Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J Neurol 256:1926–1928PubMedCrossRef
21.
go back to reference Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef
22.
go back to reference Nishihira Y, Tan CF, Onodera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182PubMedCrossRef Nishihira Y, Tan CF, Onodera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182PubMedCrossRef
23.
go back to reference Ohara S, Iwahashi T, Oide T et al (2002) Spinocerebellar ataxia type 6 with motor neuron loss: a follow-up autopsy report. J Neurol 249:633–635PubMedCrossRef Ohara S, Iwahashi T, Oide T et al (2002) Spinocerebellar ataxia type 6 with motor neuron loss: a follow-up autopsy report. J Neurol 249:633–635PubMedCrossRef
24.
go back to reference Osmand AP, Berthelier V, Wetzel R (2006) Imaging polyglutamine deposits in brain tissue. Methods Enzymol 412:106–122PubMedCrossRef Osmand AP, Berthelier V, Wetzel R (2006) Imaging polyglutamine deposits in brain tissue. Methods Enzymol 412:106–122PubMedCrossRef
25.
go back to reference Papageorgiou SG, Antelli A, Bonakis A et al (2006) Association of genetically proven Huntington’s disease and sporadic amyotrophic lateral sclerosis in a 72-year-old woman. J Neurol 253:1649–1650PubMedCrossRef Papageorgiou SG, Antelli A, Bonakis A et al (2006) Association of genetically proven Huntington’s disease and sporadic amyotrophic lateral sclerosis in a 72-year-old woman. J Neurol 253:1649–1650PubMedCrossRef
26.
go back to reference Paulson HL (2007) Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 27:133–142PubMedCrossRef Paulson HL (2007) Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 27:133–142PubMedCrossRef
27.
go back to reference Phukan J, Ali E, Pender NP et al (2010) Huntington’s disease presenting as amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:405–407PubMedCrossRef Phukan J, Ali E, Pender NP et al (2010) Huntington’s disease presenting as amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:405–407PubMedCrossRef
28.
go back to reference Piao YS, Wakabayashi K, Kakita A et al (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22PubMedCrossRef Piao YS, Wakabayashi K, Kakita A et al (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22PubMedCrossRef
29.
go back to reference Ramos EM, Keagle P, Gillis T et al (2012) Prevalence of Huntington’s disease gene CAG repeat alleles in sporadic amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 13:265–269PubMedCrossRef Ramos EM, Keagle P, Gillis T et al (2012) Prevalence of Huntington’s disease gene CAG repeat alleles in sporadic amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 13:265–269PubMedCrossRef
30.
go back to reference Ross OA, Rutherford NJ, Baker M et al (2011) Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 20:3207–3212PubMedCrossRef Ross OA, Rutherford NJ, Baker M et al (2011) Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet 20:3207–3212PubMedCrossRef
31.
go back to reference Rubio A, Steinberg K, Figlewicz DA et al (1996) Coexistence of Huntington’s disease and familial amyotrophic lateral sclerosis: case presentation. Acta Neuropathol 92:421–427PubMedCrossRef Rubio A, Steinberg K, Figlewicz DA et al (1996) Coexistence of Huntington’s disease and familial amyotrophic lateral sclerosis: case presentation. Acta Neuropathol 92:421–427PubMedCrossRef
32.
go back to reference Sadeghian H, O’Suilleabhain PE, Battiste J, Elliott JL, Trivedi JR (2011) Huntington chorea presenting with motor neuron disease. Arch Neurol 68:650–652PubMedCrossRef Sadeghian H, O’Suilleabhain PE, Battiste J, Elliott JL, Trivedi JR (2011) Huntington chorea presenting with motor neuron disease. Arch Neurol 68:650–652PubMedCrossRef
33.
go back to reference Sampathu DM, Neumann M, Kwong LK et al (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169:1343–1352PubMedCrossRef Sampathu DM, Neumann M, Kwong LK et al (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169:1343–1352PubMedCrossRef
34.
go back to reference Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165PubMedCrossRef Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165PubMedCrossRef
35.
go back to reference Seidel K, den Dunnen WF, Schultz C et al (2010) Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol 120:449–460PubMedCrossRef Seidel K, den Dunnen WF, Schultz C et al (2010) Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol 120:449–460PubMedCrossRef
36.
go back to reference Sobue G, Adachi H, Katsuno M (2003) Spinal and bulbar muscular atrophy. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 275–279 Sobue G, Adachi H, Katsuno M (2003) Spinal and bulbar muscular atrophy. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 275–279
37.
go back to reference Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRef Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRef
38.
go back to reference Tan CF, Yamada M, Toyoshima Y et al (2009) Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol 118:553–560PubMedCrossRef Tan CF, Yamada M, Toyoshima Y et al (2009) Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol 118:553–560PubMedCrossRef
39.
go back to reference The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef
40.
go back to reference Toyoshima Y, Tanaka H, Shimohata M et al (2011) Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol 122:375–378PubMedCrossRef Toyoshima Y, Tanaka H, Shimohata M et al (2011) Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol 122:375–378PubMedCrossRef
41.
go back to reference Van Damme P, Veldink JH, van Blitterswijk M et al (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76:2066–2072PubMedCrossRef Van Damme P, Veldink JH, van Blitterswijk M et al (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76:2066–2072PubMedCrossRef
42.
go back to reference Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedCrossRef Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedCrossRef
43.
go back to reference Yamada M, Tsuji S, Takahashi H (2000) Pathology of CAG repeat diseases. Neuropathology 20:319–325PubMedCrossRef Yamada M, Tsuji S, Takahashi H (2000) Pathology of CAG repeat diseases. Neuropathology 20:319–325PubMedCrossRef
44.
go back to reference Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542PubMedCrossRef Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542PubMedCrossRef
Metadata
Title
Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: a clinicopathologic study
Authors
Mari Tada
Elizabeth A. Coon
Alexander P. Osmand
Patricia A. Kirby
Wayne Martin
Marguerite Wieler
Atsushi Shiga
Hiroe Shirasaki
Masayoshi Tada
Takao Makifuchi
Mitsunori Yamada
Akiyoshi Kakita
Masatoyo Nishizawa
Hitoshi Takahashi
Henry L. Paulson
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 5/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-1005-5

Other articles of this Issue 5/2012

Acta Neuropathologica 5/2012 Go to the issue