Skip to main content
Top
Published in: Acta Neuropathologica 1/2011

01-07-2011 | Original Paper

Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody

Authors: David Capper, Matthias Preusser, Antje Habel, Felix Sahm, Ulrike Ackermann, Genevieve Schindler, Stefan Pusch, Gunhild Mechtersheimer, Hanswalter Zentgraf, Andreas von Deimling

Published in: Acta Neuropathologica | Issue 1/2011

Login to get access

Abstract

Activating mutations of the serine threonine kinase v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) are frequent in benign and malignant human tumors and are emerging as an important biomarker. Over 95% of BRAF mutations are of the V600E type and specific small molecular inhibitors are currently under pre-clinical or clinical investigation. BRAF mutation status is determined by DNA-based methods, most commonly by sequencing. Here we describe the development of a monoclonal BRAF V600E mutation-specific antibody that can differentiate BRAF V600E and wild type protein in routinely processed formalin-fixed and paraffin-embedded tissue. A total of 47 intracerebral melanoma metastases and 21 primary papillary thyroid carcinomas were evaluated by direct sequencing of BRAF and by immunohistochemistry using the BRAF V600E mutation-specific antibody clone VE1. Correlation of VE1 immunohistochemistry and BRAF sequencing revealed a perfect match for both papillary thyroid carcinomas and melanoma metastases. The staining intensity in BRAF V600E mutated tumor samples ranged from weak to strong. The generally homogenous VE1 staining patterns argue against a clonal heterogeneity of the tumors investigated. Caution is essential when only poorly preserved tissue is available for VE1 immunohistochemical analysis or when tissues with only little total BRAF protein are analyzed. Immunohistochemistry using antibody VE1 may substantially facilitate molecular analysis of BRAF V600E status for diagnostic, prognostic, and predictive purposes.
Literature
1.
go back to reference Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224. doi:10.1002/path.2913 Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224. doi:10.​1002/​path.​2913
2.
go back to reference Andrulis M, Capper D, Luft T et al (2010) Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing. Leuk Res 34:1091–1093PubMedCrossRef Andrulis M, Capper D, Luft T et al (2010) Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing. Leuk Res 34:1091–1093PubMedCrossRef
3.
go back to reference Arcila M, Lau C, Nafa K et al (2011) Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn 13:64–73PubMedCrossRef Arcila M, Lau C, Nafa K et al (2011) Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn 13:64–73PubMedCrossRef
4.
go back to reference Arkenau HT, Kefford R, Long GV (2011) Targeting BRAF for patients with melanoma. Br J Cancer 104:392–398PubMedCrossRef Arkenau HT, Kefford R, Long GV (2011) Targeting BRAF for patients with melanoma. Br J Cancer 104:392–398PubMedCrossRef
5.
go back to reference Badalian-Very G, Vergilio JA, Degar BA et al (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–1923PubMedCrossRef Badalian-Very G, Vergilio JA, Degar BA et al (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–1923PubMedCrossRef
6.
go back to reference Baitei EY, Zou M, Al-Mohanna F et al (2009) Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma. J Pathol 217:707–715PubMedCrossRef Baitei EY, Zou M, Al-Mohanna F et al (2009) Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma. J Pathol 217:707–715PubMedCrossRef
7.
go back to reference Barnier JV, Papin C, Eychene A et al (1995) The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 270:23381–23389PubMedCrossRef Barnier JV, Papin C, Eychene A et al (1995) The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 270:23381–23389PubMedCrossRef
8.
go back to reference Capper D, Sahm F, Hartmann C et al (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34:1199–1204PubMedCrossRef Capper D, Sahm F, Hartmann C et al (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34:1199–1204PubMedCrossRef
9.
go back to reference Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254PubMedCrossRef Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254PubMedCrossRef
10.
go back to reference Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601PubMedCrossRef Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601PubMedCrossRef
11.
go back to reference Chan TL, Zhao W, Leung SY et al (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881PubMed Chan TL, Zhao W, Leung SY et al (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881PubMed
12.
go back to reference Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627PubMedCrossRef Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627PubMedCrossRef
13.
go back to reference De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762PubMedCrossRef De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762PubMedCrossRef
14.
15.
go back to reference Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712PubMedCrossRef Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712PubMedCrossRef
16.
go back to reference Edlundh-Rose E, Egyhazi S, Omholt K et al (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res 16:471–478PubMedCrossRef Edlundh-Rose E, Egyhazi S, Omholt K et al (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res 16:471–478PubMedCrossRef
17.
go back to reference Eskandarpour M, Kiaii S, Zhu C et al (2005) Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115:65–73PubMedCrossRef Eskandarpour M, Kiaii S, Zhu C et al (2005) Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115:65–73PubMedCrossRef
18.
go back to reference Eychene A, Dusanter-Fourt I, Barnier JV et al (1995) Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines. Oncogene 10:1159–1165PubMed Eychene A, Dusanter-Fourt I, Barnier JV et al (1995) Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines. Oncogene 10:1159–1165PubMed
19.
go back to reference Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRef Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRef
20.
go back to reference Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York
21.
go back to reference Ichii-Nakato N, Takata M, Takayanagi S et al (2006) High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol 126:2111–2118PubMedCrossRef Ichii-Nakato N, Takata M, Takayanagi S et al (2006) High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol 126:2111–2118PubMedCrossRef
22.
go back to reference Inoue T, Nabeshima K, Kataoka H et al (1996) Feasibility of archival non-buffered formalin-fixed and paraffin-embedded tissues for PCR amplification: an analysis of resected gastric carcinoma. Pathol Int 46:997–1004PubMedCrossRef Inoue T, Nabeshima K, Kataoka H et al (1996) Feasibility of archival non-buffered formalin-fixed and paraffin-embedded tissues for PCR amplification: an analysis of resected gastric carcinoma. Pathol Int 46:997–1004PubMedCrossRef
23.
go back to reference Kefford R, Arkenau H, Brown MO et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 28:15s (suppl; abstr 8503) Kefford R, Arkenau H, Brown MO et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 28:15s (suppl; abstr 8503)
24.
go back to reference Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMed Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMed
25.
go back to reference Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRef Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRef
27.
go back to reference Lin J, Goto Y, Murata H et al (2011) Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 104:464–468PubMedCrossRef Lin J, Goto Y, Murata H et al (2011) Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 104:464–468PubMedCrossRef
28.
go back to reference Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRef Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRef
29.
go back to reference Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135:569–577PubMed Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135:569–577PubMed
30.
go back to reference Platz A, Egyhazi S, Ringborg U et al (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405PubMedCrossRef Platz A, Egyhazi S, Ringborg U et al (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405PubMedCrossRef
31.
go back to reference Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRef Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRef
32.
go back to reference Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1, 320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1, 320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef
33.
go back to reference Singer G, Oldt R 3rd, Cohen Y et al (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486PubMedCrossRef Singer G, Oldt R 3rd, Cohen Y et al (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486PubMedCrossRef
34.
go back to reference Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedCrossRef Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedCrossRef
35.
go back to reference Yuen ST, Davies H, Chan TL et al (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455PubMed Yuen ST, Davies H, Chan TL et al (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455PubMed
Metadata
Title
Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody
Authors
David Capper
Matthias Preusser
Antje Habel
Felix Sahm
Ulrike Ackermann
Genevieve Schindler
Stefan Pusch
Gunhild Mechtersheimer
Hanswalter Zentgraf
Andreas von Deimling
Publication date
01-07-2011
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 1/2011
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-011-0841-z

Other articles of this Issue 1/2011

Acta Neuropathologica 1/2011 Go to the issue