Skip to main content
Top
Published in: Acta Neuropathologica 6/2010

01-12-2010 | Original Paper

Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses

Authors: Sanaz Gabery, Karen Murphy, Kristofer Schultz, Clement T. Loy, Elizabeth McCusker, Deniz Kirik, Glenda Halliday, Åsa Petersén

Published in: Acta Neuropathologica | Issue 6/2010

Login to get access

Abstract

Huntington disease (HD) is a fatal neurodegenerative disorder caused by expansion of a CAG repeat in the HD gene. Degeneration concentrating in the basal ganglia has been thought to account for the characteristic psychiatric symptoms, cognitive decline and motor dysfunction. However, the homeostatic control of emotions and metabolism are disturbed early in HD, and focused studies have identified a loss of orexin (hypocretin) neurons in the lateral hypothalamus in HD patients. There has been limited assessment of other hypothalamic cell populations that may be involved. In this study, we quantified the neuropeptide-expressing hypothalamic neurons known to regulate metabolism and emotion in patients with HD compared to healthy controls using unbiased stereological methods. We confirmed the loss of orexin-expressing neurons in HD and revealed substantial differences in the peptide expression of other neuronal populations in the same patients. Both oxytocin- and vasopressin-expressing neurons were decreased by 45 and 24%, respectively, while the number of cocaine- and amphetamine-regulated transcript (CART)-expressing neurons was increased by 30%. The increased expression of CART in the hypothalamus is consistent with a previous study showing increased CART levels in cerebrospinal fluid from HD patients. There was no difference in the numbers of neuropeptide Y-expressing neurons. These results show significant and specific alterations in the peptide expression of hypothalamic neurons known to regulate metabolism and emotion. They may be important in the development of psychiatric symptoms and metabolic disturbances in HD, and may provide potential targets for therapeutic interventions.
Literature
1.
go back to reference (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983 (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983
2.
go back to reference Adamantidis A, de Lecea L (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19:362–370CrossRefPubMed Adamantidis A, de Lecea L (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19:362–370CrossRefPubMed
3.
go back to reference Arnulf I, Nielsen J, Lohmann E et al (2008) Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol 65:482–488CrossRefPubMed Arnulf I, Nielsen J, Lohmann E et al (2008) Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol 65:482–488CrossRefPubMed
4.
go back to reference Aziz A, Fronczek R, Maat-Schieman M et al (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18:474–483PubMed Aziz A, Fronczek R, Maat-Schieman M et al (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18:474–483PubMed
5.
go back to reference Aziz NA, Anguelova GV, Marinus J, Lammers GJ, Roos RA (2010) Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat Disord 16:345–350CrossRefPubMed Aziz NA, Anguelova GV, Marinus J, Lammers GJ, Roos RA (2010) Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat Disord 16:345–350CrossRefPubMed
6.
go back to reference Aziz NA, Anguelova GV, Marinus J, van Dijk JG, Roos RA (2010) Autonomic symptoms in patients and pre-manifest mutation carriers of Huntington’s disease. Eur J Neurol 17:1068–1074CrossRefPubMed Aziz NA, Anguelova GV, Marinus J, van Dijk JG, Roos RA (2010) Autonomic symptoms in patients and pre-manifest mutation carriers of Huntington’s disease. Eur J Neurol 17:1068–1074CrossRefPubMed
7.
go back to reference Aziz NA, Pijl H, Frolich M et al (2009) Increased hypothalamic–pituitary–adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab 94:1223–1228CrossRefPubMed Aziz NA, Pijl H, Frolich M et al (2009) Increased hypothalamic–pituitary–adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab 94:1223–1228CrossRefPubMed
8.
go back to reference Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553CrossRefPubMed Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553CrossRefPubMed
9.
go back to reference Bird ED, Chiappa SA, Fink G (1976) Brain immunoreactive gonadotropin-releasing hormone in Huntington’s chorea and in non-choreic subjects. Nature 260:536–538CrossRefPubMed Bird ED, Chiappa SA, Fink G (1976) Brain immunoreactive gonadotropin-releasing hormone in Huntington’s chorea and in non-choreic subjects. Nature 260:536–538CrossRefPubMed
10.
go back to reference Bjorkqvist M, Leavitt BR, Nielsen JE et al (2007) Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord 22:1952–1954CrossRefPubMed Bjorkqvist M, Leavitt BR, Nielsen JE et al (2007) Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord 22:1952–1954CrossRefPubMed
11.
go back to reference Bjorkqvist M, Petersen A, Bacos K et al (2006) Progressive alterations in the hypothalamic–pituitary–adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum Mol Genet 15:1713–1721CrossRefPubMed Bjorkqvist M, Petersen A, Bacos K et al (2006) Progressive alterations in the hypothalamic–pituitary–adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum Mol Genet 15:1713–1721CrossRefPubMed
12.
go back to reference Braak H, Braak E (1998) Pick’s disease: cytoskeletal changes in the hypothalamic lateral tuberal nucleus. Brain Res 802:119–124CrossRefPubMed Braak H, Braak E (1998) Pick’s disease: cytoskeletal changes in the hypothalamic lateral tuberal nucleus. Brain Res 802:119–124CrossRefPubMed
13.
go back to reference Burbach JP (2002) Regulation of gene promoters of hypothalamic peptides. Front Neuroendocrinol 23:342–369CrossRefPubMed Burbach JP (2002) Regulation of gene promoters of hypothalamic peptides. Front Neuroendocrinol 23:342–369CrossRefPubMed
14.
go back to reference Calder AJ, Keane J, Young AW et al (2010) The relation between anger and different forms of disgust: implications for emotion recognition impairments in Huntington’s disease. Neuropsychologia 48:2719–2729CrossRefPubMed Calder AJ, Keane J, Young AW et al (2010) The relation between anger and different forms of disgust: implications for emotion recognition impairments in Huntington’s disease. Neuropsychologia 48:2719–2729CrossRefPubMed
15.
go back to reference Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84:1–24CrossRefPubMed Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84:1–24CrossRefPubMed
16.
go back to reference Chan EY, Nasir J, Gutekunst CA et al (2002) Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet 11:945–959CrossRefPubMed Chan EY, Nasir J, Gutekunst CA et al (2002) Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet 11:945–959CrossRefPubMed
17.
go back to reference Covington HE 3rd, Vialou V, Nestler EJ (2010) From synapse to nucleus: novel targets for treating depression. Neuropharmacology 58:683–693CrossRefPubMed Covington HE 3rd, Vialou V, Nestler EJ (2010) From synapse to nucleus: novel targets for treating depression. Neuropharmacology 58:683–693CrossRefPubMed
18.
go back to reference DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993CrossRefPubMed DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993CrossRefPubMed
19.
go back to reference Domes G, Heinrichs M, Glascher J et al (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190CrossRefPubMed Domes G, Heinrichs M, Glascher J et al (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190CrossRefPubMed
20.
go back to reference Douaud G, Gaura V, Ribeiro MJ et al (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32:1562–1575CrossRefPubMed Douaud G, Gaura V, Ribeiro MJ et al (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32:1562–1575CrossRefPubMed
21.
go back to reference Dragatsis I, Zeitlin S, Dietrich P (2004) Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum Mol Genet 13:3115–3125CrossRefPubMed Dragatsis I, Zeitlin S, Dietrich P (2004) Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum Mol Genet 13:3115–3125CrossRefPubMed
22.
go back to reference Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346CrossRefPubMed Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346CrossRefPubMed
23.
go back to reference Egashira N, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2009) New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. J Pharmacol Sci 109:44–49CrossRefPubMed Egashira N, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2009) New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. J Pharmacol Sci 109:44–49CrossRefPubMed
24.
go back to reference Elias CF, Lee CE, Kelly JF et al (2001) Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol 432:1–19CrossRefPubMed Elias CF, Lee CE, Kelly JF et al (2001) Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol 432:1–19CrossRefPubMed
25.
go back to reference Goodman AO, Murgatroyd PR, Medina-Gomez G et al (2008) The metabolic profile of early Huntington’s disease—a combined human and transgenic mouse study. Exp Neurol 210:691–698CrossRefPubMed Goodman AO, Murgatroyd PR, Medina-Gomez G et al (2008) The metabolic profile of early Huntington’s disease—a combined human and transgenic mouse study. Exp Neurol 210:691–698CrossRefPubMed
26.
go back to reference Gray JM, Young AW, Barker WA, Curtis A, Gibson D (1997) Impaired recognition of disgust in Huntington’s disease gene carriers. Brain 120(Pt 11):2029–2038CrossRefPubMed Gray JM, Young AW, Barker WA, Curtis A, Gibson D (1997) Impaired recognition of disgust in Huntington’s disease gene carriers. Brain 120(Pt 11):2029–2038CrossRefPubMed
27.
go back to reference Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMed Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMed
28.
go back to reference Gutekunst CA, Li SH, Yi H et al (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMed Gutekunst CA, Li SH, Yi H et al (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMed
29.
go back to reference Hebb MO, Denovan-Wright EM, Robertson HA (1999) Expression of the Huntington’s disease gene is regulated in astrocytes in the arcuate nucleus of the hypothalamus of postpartum rats. FASEB J 13:1099–1106PubMed Hebb MO, Denovan-Wright EM, Robertson HA (1999) Expression of the Huntington’s disease gene is regulated in astrocytes in the arcuate nucleus of the hypothalamus of postpartum rats. FASEB J 13:1099–1106PubMed
30.
go back to reference Hennenlotter A, Schroeder U, Erhard P et al (2004) Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain 127:1446–1453CrossRefPubMed Hennenlotter A, Schroeder U, Erhard P et al (2004) Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain 127:1446–1453CrossRefPubMed
31.
go back to reference Herndon ES, Hladik CL, Shang P et al (2009) Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 68:250–261CrossRefPubMed Herndon ES, Hladik CL, Shang P et al (2009) Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 68:250–261CrossRefPubMed
32.
go back to reference Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832CrossRefPubMed Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832CrossRefPubMed
33.
go back to reference Hult S, Schultz K, Soylu R, Petersen A (2010) Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets (Epub ahead of print) Hult S, Schultz K, Soylu R, Petersen A (2010) Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets (Epub ahead of print)
34.
go back to reference Imarisio S, Carmichael J, Korolchuk V et al (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209CrossRefPubMed Imarisio S, Carmichael J, Korolchuk V et al (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209CrossRefPubMed
35.
go back to reference Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779CrossRefPubMed Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779CrossRefPubMed
36.
go back to reference Johnson SA, Stout JC, Solomon AC et al (2007) Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington’s disease. Brain 130:1732–1744CrossRefPubMed Johnson SA, Stout JC, Solomon AC et al (2007) Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington’s disease. Brain 130:1732–1744CrossRefPubMed
37.
go back to reference Julien CL, Thompson JC, Wild S et al (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78:939–943CrossRefPubMed Julien CL, Thompson JC, Wild S et al (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78:939–943CrossRefPubMed
38.
go back to reference Kassubek J, Juengling FD, Kioschies T et al (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220PubMed Kassubek J, Juengling FD, Kioschies T et al (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75:213–220PubMed
39.
go back to reference Kishi T, Elmquist JK (2005) Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 10:132–146CrossRefPubMed Kishi T, Elmquist JK (2005) Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 10:132–146CrossRefPubMed
40.
go back to reference Kleinridders A, Konner AC, Bruning JC (2009) CNS-targets in control of energy and glucose homeostasis. Curr Opin Pharmacol 9:794–804CrossRefPubMed Kleinridders A, Konner AC, Bruning JC (2009) CNS-targets in control of energy and glucose homeostasis. Curr Opin Pharmacol 9:794–804CrossRefPubMed
41.
go back to reference Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676CrossRefPubMed Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676CrossRefPubMed
42.
go back to reference Kotliarova S, Jana NR, Sakamoto N et al (2005) Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine-EGFP fluorescent aggregates. J Neurochem 93:641–653CrossRefPubMed Kotliarova S, Jana NR, Sakamoto N et al (2005) Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine-EGFP fluorescent aggregates. J Neurochem 93:641–653CrossRefPubMed
43.
go back to reference Koylu EO, Balkan B, Kuhar MJ, Pogun S (2006) Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides 27:1956–1969CrossRefPubMed Koylu EO, Balkan B, Kuhar MJ, Pogun S (2006) Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides 27:1956–1969CrossRefPubMed
44.
go back to reference Kremer HP (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. Prog Brain Res 93:249–261CrossRefPubMed Kremer HP (1992) The hypothalamic lateral tuberal nucleus: normal anatomy and changes in neurological diseases. Prog Brain Res 93:249–261CrossRefPubMed
45.
go back to reference Kremer HP, Roos RA, Dingjan G, Marani E, Bots GT (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382CrossRefPubMed Kremer HP, Roos RA, Dingjan G, Marani E, Bots GT (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382CrossRefPubMed
46.
go back to reference Kremer HP, Roos RA, Dingjan GM et al (1991) The hypothalamic lateral tuberal nucleus and the characteristics of neuronal loss in Huntington’s disease. Neurosci Lett 132:101–104CrossRefPubMed Kremer HP, Roos RA, Dingjan GM et al (1991) The hypothalamic lateral tuberal nucleus and the characteristics of neuronal loss in Huntington’s disease. Neurosci Lett 132:101–104CrossRefPubMed
47.
go back to reference Kuhn A, Goldstein DR, Hodges A et al (2007) Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16:1845–1861CrossRefPubMed Kuhn A, Goldstein DR, Hodges A et al (2007) Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16:1845–1861CrossRefPubMed
48.
go back to reference Lalic NM, Maric J, Svetel M et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480CrossRefPubMed Lalic NM, Maric J, Svetel M et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480CrossRefPubMed
49.
go back to reference Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176CrossRefPubMed Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176CrossRefPubMed
50.
go back to reference Li SH, Yu ZX, Li CL et al (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23:6956–6964PubMed Li SH, Yu ZX, Li CL et al (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23:6956–6964PubMed
51.
go back to reference Li XJ, Li SH, Sharp AH et al (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378:398–402CrossRefPubMed Li XJ, Li SH, Sharp AH et al (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378:398–402CrossRefPubMed
52.
go back to reference Mai J, Paxinos G, Voss T (2008) Atlas of the human brain. Academic Press, Oxford Mai J, Paxinos G, Voss T (2008) Atlas of the human brain. Academic Press, Oxford
53.
go back to reference Metzger S, Rong J, Nguyen HP et al (2008) Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease. Hum Mol Genet 17:1137–1146CrossRefPubMed Metzger S, Rong J, Nguyen HP et al (2008) Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease. Hum Mol Genet 17:1137–1146CrossRefPubMed
54.
go back to reference Miraglia del Giudice E, Santoro N, Fiumani P et al (2006) Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress Anxiety 23:90–92CrossRefPubMed Miraglia del Giudice E, Santoro N, Fiumani P et al (2006) Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress Anxiety 23:90–92CrossRefPubMed
55.
go back to reference Mochel F, Charles P, Seguin F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One 2:e647CrossRefPubMed Mochel F, Charles P, Seguin F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One 2:e647CrossRefPubMed
56.
go back to reference Montagne B, Kessels RP, Kammers MP et al (2006) Perception of emotional facial expressions at different intensities in early-symptomatic Huntington’s disease. Eur Neurol 55:151–154CrossRefPubMed Montagne B, Kessels RP, Kammers MP et al (2006) Perception of emotional facial expressions at different intensities in early-symptomatic Huntington’s disease. Eur Neurol 55:151–154CrossRefPubMed
57.
go back to reference Morton AJ, Wood NI, Hastings MH et al (2005) Disintegration of the sleep–wake cycle and circadian timing in Huntington’s disease. J Neurosci 25:157–163CrossRefPubMed Morton AJ, Wood NI, Hastings MH et al (2005) Disintegration of the sleep–wake cycle and circadian timing in Huntington’s disease. J Neurosci 25:157–163CrossRefPubMed
58.
go back to reference Neumann ID, Torner L, Wigger A (2000) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575CrossRefPubMed Neumann ID, Torner L, Wigger A (2000) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575CrossRefPubMed
59.
go back to reference Pae CU, Lee C, Paik IH (2007) Therapeutic implication of cocaine- and amphetamine-regulated transcript (CART) in the treatment of depression. Med Hypotheses 69:132–135CrossRefPubMed Pae CU, Lee C, Paik IH (2007) Therapeutic implication of cocaine- and amphetamine-regulated transcript (CART) in the treatment of depression. Med Hypotheses 69:132–135CrossRefPubMed
60.
go back to reference Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967CrossRefPubMed Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967CrossRefPubMed
61.
go back to reference Petersen A, Gil J, Maat-Schieman ML et al (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14:39–47CrossRefPubMed Petersen A, Gil J, Maat-Schieman ML et al (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14:39–47CrossRefPubMed
62.
go back to reference Petersen A, Hult S, Kirik D (2009) Huntington’s disease—new perspectives based on neuroendocrine changes in rodent models. Neurodegener Dis 6:154–164CrossRefPubMed Petersen A, Hult S, Kirik D (2009) Huntington’s disease—new perspectives based on neuroendocrine changes in rodent models. Neurodegener Dis 6:154–164CrossRefPubMed
63.
go back to reference Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Disord 23:1491–1504CrossRefPubMed Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Disord 23:1491–1504CrossRefPubMed
64.
go back to reference Politis M, Pavese N, Tai YF et al (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869CrossRefPubMed Politis M, Pavese N, Tai YF et al (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869CrossRefPubMed
65.
go back to reference Popovic V, Svetel M, Djurovic M et al (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455CrossRefPubMed Popovic V, Svetel M, Djurovic M et al (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455CrossRefPubMed
66.
go back to reference Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9:747–758CrossRefPubMed Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9:747–758CrossRefPubMed
67.
go back to reference Saleh N, Moutereau S, Durr A et al (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS One 4:e4962CrossRefPubMed Saleh N, Moutereau S, Durr A et al (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS One 4:e4962CrossRefPubMed
68.
go back to reference Savaskan E, Ehrhardt R, Schulz A, Walter M, Schachinger H (2008) Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33:368–374CrossRefPubMed Savaskan E, Ehrhardt R, Schulz A, Walter M, Schachinger H (2008) Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33:368–374CrossRefPubMed
69.
go back to reference Sheng G, Chang GQ, Lin JY et al (2006) Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 12:526–533CrossRefPubMed Sheng G, Chang GQ, Lin JY et al (2006) Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 12:526–533CrossRefPubMed
71.
go back to reference Sprengelmeyer R, Schroeder U, Young AW, Epplen JT (2006) Disgust in pre-clinical Huntington’s disease: a longitudinal study. Neuropsychologia 44:518–533CrossRefPubMed Sprengelmeyer R, Schroeder U, Young AW, Epplen JT (2006) Disgust in pre-clinical Huntington’s disease: a longitudinal study. Neuropsychologia 44:518–533CrossRefPubMed
72.
go back to reference Sprengelmeyer R, Young AW, Calder AJ et al (1996) Loss of disgust. Perception of faces and emotions in Huntington’s disease. Brain 119 (Pt 5):1647–1665 Sprengelmeyer R, Young AW, Calder AJ et al (1996) Loss of disgust. Perception of faces and emotions in Huntington’s disease. Brain 119 (Pt 5):1647–1665
73.
go back to reference Stanek LM (2006) Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 27:2005–2011CrossRefPubMed Stanek LM (2006) Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 27:2005–2011CrossRefPubMed
74.
75.
go back to reference Timmers HJ, Swaab DF, van de Nes JA, Kremer HP (1996) Somatostatin 1–12 immunoreactivity is decreased in the hypothalamic lateral tuberal nucleus of Huntington’s disease patients. Brain Res 728:141–148CrossRefPubMed Timmers HJ, Swaab DF, van de Nes JA, Kremer HP (1996) Somatostatin 1–12 immunoreactivity is decreased in the hypothalamic lateral tuberal nucleus of Huntington’s disease patients. Brain Res 728:141–148CrossRefPubMed
76.
go back to reference Trejo A, Tarrats RM, Alonso ME et al (2004) Assessment of the nutrition status of patients with Huntington’s disease. Nutrition 20:192–196CrossRefPubMed Trejo A, Tarrats RM, Alonso ME et al (2004) Assessment of the nutrition status of patients with Huntington’s disease. Nutrition 20:192–196CrossRefPubMed
77.
go back to reference Trottier Y, Lutz Y, Stevanin G et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378:403–406CrossRefPubMed Trottier Y, Lutz Y, Stevanin G et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378:403–406CrossRefPubMed
78.
go back to reference Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL et al (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65CrossRefPubMed Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL et al (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65CrossRefPubMed
79.
go back to reference Underwood BR, Broadhurst D, Dunn WB et al (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129:877–886CrossRefPubMed Underwood BR, Broadhurst D, Dunn WB et al (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129:877–886CrossRefPubMed
80.
go back to reference van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19:441–448PubMed van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19:441–448PubMed
81.
go back to reference Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res 170:261–276CrossRefPubMed Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res 170:261–276CrossRefPubMed
82.
go back to reference Videnovic A, Leurgans S, Fan W, Jaglin J, Shannon KM (2009) Daytime somnolence and nocturnal sleep disturbances in Huntington disease. Parkinsonism Relat Disord 15:471–474CrossRefPubMed Videnovic A, Leurgans S, Fan W, Jaglin J, Shannon KM (2009) Daytime somnolence and nocturnal sleep disturbances in Huntington disease. Parkinsonism Relat Disord 15:471–474CrossRefPubMed
83.
go back to reference Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed
84.
go back to reference West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61CrossRefPubMed West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61CrossRefPubMed
85.
go back to reference Wiehager S, Beiderbeck DI, Gruber SH et al (2009) Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol Dis 34:375–380CrossRefPubMed Wiehager S, Beiderbeck DI, Gruber SH et al (2009) Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol Dis 34:375–380CrossRefPubMed
86.
go back to reference Wood NI, Goodman AO, van der Burg JM et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76:70–79CrossRefPubMed Wood NI, Goodman AO, van der Burg JM et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76:70–79CrossRefPubMed
87.
go back to reference Yamanaka T, Tosaki A, Miyazaki H et al (2010) Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Hum Mol Genet 19:2099–2112CrossRefPubMed Yamanaka T, Tosaki A, Miyazaki H et al (2010) Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Hum Mol Genet 19:2099–2112CrossRefPubMed
Metadata
Title
Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses
Authors
Sanaz Gabery
Karen Murphy
Kristofer Schultz
Clement T. Loy
Elizabeth McCusker
Deniz Kirik
Glenda Halliday
Åsa Petersén
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 6/2010
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-010-0742-6

Other articles of this Issue 6/2010

Acta Neuropathologica 6/2010 Go to the issue