Skip to main content
Top
Published in: Acta Neuropathologica 4/2009

01-04-2009 | Original Paper

Microvessel length density, total length, and length per neuron in five subcortical regions in schizophrenia

Authors: Pawel Kreczmanski, Helmut Heinsen, Valentina Mantua, Fritz Woltersdorf, Thorsten Masson, Norbert Ulfig, Rainald Schmidt-Kastner, Hubert Korr, Harry W. M. Steinbusch, Patrick R. Hof, Christoph Schmitz

Published in: Acta Neuropathologica | Issue 4/2009

Login to get access

Abstract

Recent studies (Prabakaran et al. in Mol Psychiat 9:684–697, 2004; Hanson and Gottesman in BMC Med Genet 6:7, 2005; Harris et al. in PLoS ONE 3:e3964, 2008) have suggested that microvascular abnormalities occur in the brains of patients with schizophrenia. To assess the integrity of the microvasculature in subcortical brain regions in schizophrenia, we investigated the microvessel length density, total microvessel length, and microvessel length per neuron using design-based stereologic methods in the caudate nucleus, putamen, nucleus accumbens, mediodorsal nucleus of the thalamus, and lateral nucleus of the amygdala in both hemispheres of 13 postmortem brains from male patients with schizophrenia and 13 age-matched male controls. A general linear model multivariate analysis of variance with diagnosis and hemisphere as fixed factors and illness duration (patients with schizophrenia) or age (controls), postmortem interval and fixation time as covariates showed no statistically significant differences in the brains from the patients with schizophrenia compared to the controls. These data extend our earlier findings in prefrontal cortex area 9 and anterior cingulate cortex area 24 from the same brains (Kreczmanski et al. in Acta Neuropathol 109:510–518, 2005), that alterations in microvessel length density, total length, and particularly length per neuron cannot be considered characteristic features of schizophrenia. As such, compromised brain metabolism and occurrence of oxidative stress in the brains of patients with schizophrenia are likely caused by other mechanisms such as functional disruption in the coupling of cerebral blood flow to neuronal metabolic needs.
Literature
1.
go back to reference Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958PubMed Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958PubMed
2.
go back to reference Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 92:217–231PubMedCrossRef Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 92:217–231PubMedCrossRef
3.
go back to reference Baborie A, Kuschinksy W (2006) Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neurosci Lett 404:20–22PubMedCrossRef Baborie A, Kuschinksy W (2006) Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neurosci Lett 404:20–22PubMedCrossRef
4.
go back to reference Barch DM, Mathews JR, Buckner RL et al (2003) Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. Neuroimage 20:1884–1893PubMedCrossRef Barch DM, Mathews JR, Buckner RL et al (2003) Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. Neuroimage 20:1884–1893PubMedCrossRef
5.
go back to reference Basu S, Nagy JA, Pal S et al (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574PubMedCrossRef Basu S, Nagy JA, Pal S et al (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574PubMedCrossRef
6.
go back to reference Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res 68:99–109PubMedCrossRef Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res 68:99–109PubMedCrossRef
7.
go back to reference Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135PubMed Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135PubMed
8.
9.
go back to reference Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedCrossRef Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedCrossRef
10.
go back to reference Brambilla P, Cerini R, Fabene PF et al (2007) Assessment of cerebral blood volume in schizophrenia: a magnetic resonance imaging study. J Psychiatr Res 41:502–510PubMedCrossRef Brambilla P, Cerini R, Fabene PF et al (2007) Assessment of cerebral blood volume in schizophrenia: a magnetic resonance imaging study. J Psychiatr Res 41:502–510PubMedCrossRef
11.
go back to reference Brockhaus H (1942) Zur feineren Anatomie des Septum und des Striatum. J Psychol Neurol 5:1–56CrossRef Brockhaus H (1942) Zur feineren Anatomie des Septum und des Striatum. J Psychol Neurol 5:1–56CrossRef
12.
go back to reference Byne W, Buchsbaum MS, Mattiace LA et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65PubMedCrossRef Byne W, Buchsbaum MS, Mattiace LA et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65PubMedCrossRef
13.
go back to reference Calhoun ME, Mouton PR (2000) Length measurement: new developments in neurostereology and 3D imagery. J Chem Neuroanat 21:257–265CrossRef Calhoun ME, Mouton PR (2000) Length measurement: new developments in neurostereology and 3D imagery. J Chem Neuroanat 21:257–265CrossRef
14.
go back to reference Casanova MF, de Zeeuw L, Switala A et al (2005) Mean cell spacing abnormalities in the neocortex of patients with schizophrenia. Psychiatry Res 133:1–12PubMedCrossRef Casanova MF, de Zeeuw L, Switala A et al (2005) Mean cell spacing abnormalities in the neocortex of patients with schizophrenia. Psychiatry Res 133:1–12PubMedCrossRef
15.
go back to reference Catafau AM, Parellada E, Lomena FJ et al (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation Technetium-99 m-HMPAO-SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941PubMed Catafau AM, Parellada E, Lomena FJ et al (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation Technetium-99 m-HMPAO-SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941PubMed
16.
go back to reference Cohen BM, Yurgelun-Todd D, English CD et al (1995) Abnormalities of regional distribution of cerebral vasculature in schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152:1801–1803PubMed Cohen BM, Yurgelun-Todd D, English CD et al (1995) Abnormalities of regional distribution of cerebral vasculature in schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152:1801–1803PubMed
17.
go back to reference Cullen TJ, Walker MA, Parkinson N et al (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166PubMedCrossRef Cullen TJ, Walker MA, Parkinson N et al (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166PubMedCrossRef
18.
go back to reference Danos P, Schmidt A, Baumann B et al (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289PubMedCrossRef Danos P, Schmidt A, Baumann B et al (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289PubMedCrossRef
19.
go back to reference Davis KL, Stewart DG, Friedman JI et al (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456PubMedCrossRef Davis KL, Stewart DG, Friedman JI et al (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456PubMedCrossRef
20.
go back to reference Dewulf A (1971) Anatomy of the normal human thalamus: topometry and standardized nomenclature. Elsevier, Amsterdam Dewulf A (1971) Anatomy of the normal human thalamus: topometry and standardized nomenclature. Elsevier, Amsterdam
21.
go back to reference Dorph-Petersen KA, Pierri JN, Sun Z et al (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462PubMedCrossRef Dorph-Petersen KA, Pierri JN, Sun Z et al (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462PubMedCrossRef
22.
go back to reference Farkas E, Donka G, de Vos RA et al (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64PubMedCrossRef Farkas E, Donka G, de Vos RA et al (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64PubMedCrossRef
23.
go back to reference Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38:1027–1032PubMedCrossRef Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38:1027–1032PubMedCrossRef
24.
25.
go back to reference Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751PubMedCrossRef Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751PubMedCrossRef
26.
go back to reference Hanson DR, Gottesman II (2005) Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 6:7PubMedCrossRef Hanson DR, Gottesman II (2005) Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 6:7PubMedCrossRef
27.
go back to reference Harris LW, Wayland M, Lan M et al (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 3:e3964PubMedCrossRef Harris LW, Wayland M, Lan M et al (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 3:e3964PubMedCrossRef
28.
go back to reference Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624PubMedCrossRef Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624PubMedCrossRef
29.
go back to reference Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419PubMedCrossRef Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419PubMedCrossRef
30.
go back to reference Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMedCrossRef Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMedCrossRef
31.
go back to reference Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173 Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173
32.
go back to reference Heinsen H, Rub U, Bauer M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622PubMedCrossRef Heinsen H, Rub U, Bauer M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622PubMedCrossRef
33.
go back to reference Hill K, Mann L, Laws KR et al (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–256PubMedCrossRef Hill K, Mann L, Laws KR et al (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–256PubMedCrossRef
34.
go back to reference Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34PubMedCrossRef Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34PubMedCrossRef
35.
go back to reference Hof PR, Haroutunian V, Copland C et al (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27:1193–1200PubMedCrossRef Hof PR, Haroutunian V, Copland C et al (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27:1193–1200PubMedCrossRef
36.
go back to reference Hof PR, Haroutunian V, Friedrich VL Jr et al (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085PubMedCrossRef Hof PR, Haroutunian V, Friedrich VL Jr et al (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085PubMedCrossRef
37.
go back to reference Holt DJ, Herman MM, Hyde TM et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31PubMedCrossRef Holt DJ, Herman MM, Hyde TM et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31PubMedCrossRef
38.
go back to reference Ingvar DH, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1484–1486PubMedCrossRef Ingvar DH, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1484–1486PubMedCrossRef
39.
go back to reference Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253PubMedCrossRef Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253PubMedCrossRef
40.
go back to reference Jones EG (1997) A description of the human thalamus. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Experimental and clinical aspects. Elsevier Science, Oxford, pp 425–500 Jones EG (1997) A description of the human thalamus. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Experimental and clinical aspects. Elsevier Science, Oxford, pp 425–500
43.
go back to reference Khaitovich P, Lockstone HE, Wayland MT et al (2008) Metabolic changes in schizophrenia and human brain evolution. Genome Biol 9:R124PubMedCrossRef Khaitovich P, Lockstone HE, Wayland MT et al (2008) Metabolic changes in schizophrenia and human brain evolution. Genome Biol 9:R124PubMedCrossRef
44.
go back to reference Kim HJ, Koh PO, Kang SS et al (2001) The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorioallantoic membrane. Life Sci 68:1031–1040PubMedCrossRef Kim HJ, Koh PO, Kang SS et al (2001) The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorioallantoic membrane. Life Sci 68:1031–1040PubMedCrossRef
45.
go back to reference Kreczmanski P, Schmidt-Kastner R, Heinsen H et al (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol 109:510–518PubMedCrossRef Kreczmanski P, Schmidt-Kastner R, Heinsen H et al (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol 109:510–518PubMedCrossRef
46.
go back to reference Kreczmanski P, Heinsen H, Mantua V et al (2007) Volume, neuron density, and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedCrossRef Kreczmanski P, Heinsen H, Mantua V et al (2007) Volume, neuron density, and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedCrossRef
47.
go back to reference Krimer LS, Muly EC 3rd, Williams GV et al (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRef Krimer LS, Muly EC 3rd, Williams GV et al (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRef
48.
go back to reference Lauer M, Heinsen H (1996) Cytoarchitectonics of the human nucleus accumbens. J Hirnforsch 37:243–254PubMed Lauer M, Heinsen H (1996) Cytoarchitectonics of the human nucleus accumbens. J Hirnforsch 37:243–254PubMed
49.
go back to reference Lauer M, Beckmann H (1997) The human striatum in schizophrenia. I. Increase in overall relative striatal volume in schizophrenics. Psychiatry Res 68:87–98PubMedCrossRef Lauer M, Beckmann H (1997) The human striatum in schizophrenia. I. Increase in overall relative striatal volume in schizophrenics. Psychiatry Res 68:87–98PubMedCrossRef
50.
go back to reference Lauer M, Senitz D, Beckmann H (2001) Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 108:645–660PubMedCrossRef Lauer M, Senitz D, Beckmann H (2001) Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 108:645–660PubMedCrossRef
51.
go back to reference Lewis DA, Lewitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432PubMedCrossRef Lewis DA, Lewitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432PubMedCrossRef
52.
go back to reference Li JZ, Vawter MP, Walsh DM et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616PubMedCrossRef Li JZ, Vawter MP, Walsh DM et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616PubMedCrossRef
53.
go back to reference Malaspina D, Harkavy-Friedman J, Corcoran C et al (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937PubMedCrossRef Malaspina D, Harkavy-Friedman J, Corcoran C et al (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937PubMedCrossRef
54.
go back to reference Meyer-Lindenberg A, Miletich RS, Kohn PD et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef Meyer-Lindenberg A, Miletich RS, Kohn PD et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef
55.
go back to reference Middleton FA, Mirnics K, Pierri JN et al (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729PubMed Middleton FA, Mirnics K, Pierri JN et al (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729PubMed
56.
go back to reference Mouton PR, Gokhale AM, Ward NL et al (2002) Stereological length estimation using spherical probes. J Microsc 206:54–64PubMedCrossRef Mouton PR, Gokhale AM, Ward NL et al (2002) Stereological length estimation using spherical probes. J Microsc 206:54–64PubMedCrossRef
58.
go back to reference Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028PubMed Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028PubMed
59.
go back to reference Popken GJ, Bunney WE, Potkin SG et al (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280PubMedCrossRef Popken GJ, Bunney WE, Potkin SG et al (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280PubMedCrossRef
60.
go back to reference Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697PubMedCrossRef Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697PubMedCrossRef
61.
go back to reference Schmidt-Kastner R, van Os J, WM Steinbusch H et al (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84:253–271 Schmidt-Kastner R, van Os J, WM Steinbusch H et al (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84:253–271
62.
63.
go back to reference Schultz SK, O’Leary DS, Boles Ponto LL et al (2002) Age and regional cerebral blood flow in schizophrenia: age effects in anterior cingulate, frontal, and parietal cortex. J Neuropsychiatry Clin Neurosci 14:19–24PubMed Schultz SK, O’Leary DS, Boles Ponto LL et al (2002) Age and regional cerebral blood flow in schizophrenia: age effects in anterior cingulate, frontal, and parietal cortex. J Neuropsychiatry Clin Neurosci 14:19–24PubMed
64.
go back to reference Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329PubMedCrossRef Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329PubMedCrossRef
65.
go back to reference Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry 161:398–413PubMedCrossRef Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry 161:398–413PubMedCrossRef
66.
go back to reference Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472PubMedCrossRef Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472PubMedCrossRef
67.
go back to reference Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443PubMedCrossRef Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443PubMedCrossRef
68.
go back to reference Teunis MA, Kavelaars A, Voest E (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467PubMed Teunis MA, Kavelaars A, Voest E (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467PubMed
69.
go back to reference Tkachev D, Mimmack ML, Ryan MM et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805PubMedCrossRef Tkachev D, Mimmack ML, Ryan MM et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805PubMedCrossRef
70.
go back to reference Tomita H, Vawter MP, Walsh DM et al (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352PubMedCrossRef Tomita H, Vawter MP, Walsh DM et al (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352PubMedCrossRef
72.
go back to reference Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 615:663–679CrossRef Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 615:663–679CrossRef
73.
go back to reference Webster MJ, Knable MB, Johnston-Wilson N et al (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immunol 15:388–400CrossRef Webster MJ, Knable MB, Johnston-Wilson N et al (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immunol 15:388–400CrossRef
74.
go back to reference Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124PubMed Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124PubMed
75.
go back to reference Young KA, Manaye KF, Liang C et al (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953PubMedCrossRef Young KA, Manaye KF, Liang C et al (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953PubMedCrossRef
Metadata
Title
Microvessel length density, total length, and length per neuron in five subcortical regions in schizophrenia
Authors
Pawel Kreczmanski
Helmut Heinsen
Valentina Mantua
Fritz Woltersdorf
Thorsten Masson
Norbert Ulfig
Rainald Schmidt-Kastner
Hubert Korr
Harry W. M. Steinbusch
Patrick R. Hof
Christoph Schmitz
Publication date
01-04-2009
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 4/2009
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-009-0482-7

Other articles of this Issue 4/2009

Acta Neuropathologica 4/2009 Go to the issue