Skip to main content
Top
Published in: Acta Neuropathologica 2/2005

01-02-2005 | Regular Paper

Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact

Authors: Hartwig Wolburg, Karen Wolburg-Buchholz, Britta Engelhardt

Published in: Acta Neuropathologica | Issue 2/2005

Login to get access

Abstract

Diapedesis of leukocytes across endothelial barriers is generally believed to require the opening of endothelial tight junctions. At the blood-brain barrier (BBB), endothelial cells are interconnected by complex tight junctions. Here, we show by serial section conventional electron microscopy that during experimental autoimmune encephalomyelitis mononuclear cells traverse cerebral microvessels by a transcellular pathway, leaving the endothelial tight junctions intact. Cerebral endothelial cells were found to form filopodia-like membrane protrusions on their luminal aspect, thus embracing the mononuclear cells and forming cup-like structures, and eventually pores, through which the traversing cell could reach the abluminal side. At the abluminal side endothelial cell protrusions surrounding a migrating inflammatory cell were found to be progressively lined with basal lamina, suggesting a change from luminal to abluminal membrane characteristics of endothelial cell membranes during inflammatory cell diapedesis. Morphological evidence for the involvement of tight junctions in the diapedesis of mononuclear cells across the inflamed BBB could not be obtained in any case. Taken together, the presence of morphologically intact tight junctions and our novel finding of the presence of a basal lamina on both sides of abluminal endothelial cell protrusions surrounding migrating inflammatory cells suggests that during experimental autoimmune encephalomyelitis diapedesis of mononuclear cells occurs via a transendothelial process.
Literature
1.
go back to reference Astrom KE (1968) Migration of lymphocytes through the endothelium of venules in experimental allergic neuritis. Experientia 24:589–590PubMed Astrom KE (1968) Migration of lymphocytes through the endothelium of venules in experimental allergic neuritis. Experientia 24:589–590PubMed
2.
go back to reference Bobik R, Dabrowski Z (1995) Emperipolesis of marrow cells within megakaryocytes in the bone marrow of sublethally irradiated mice. Ann Hematol 70:91–95CrossRefPubMed Bobik R, Dabrowski Z (1995) Emperipolesis of marrow cells within megakaryocytes in the bone marrow of sublethally irradiated mice. Ann Hematol 70:91–95CrossRefPubMed
3.
go back to reference Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036CrossRefPubMed Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036CrossRefPubMed
4.
go back to reference Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253PubMed Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253PubMed
5.
go back to reference Carman CV, Jun C-D, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J Immunol 171:6135–6144PubMed Carman CV, Jun C-D, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J Immunol 171:6135–6144PubMed
6.
go back to reference Claudio L, Raine CS, Brosnan C (1995) Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol 90:228–238PubMed Claudio L, Raine CS, Brosnan C (1995) Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol 90:228–238PubMed
7.
go back to reference Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820CrossRefPubMed Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820CrossRefPubMed
8.
go back to reference Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino G, Furlan R, De Simoni MG, Dejana E (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190:1351–1356CrossRefPubMed Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino G, Furlan R, De Simoni MG, Dejana E (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190:1351–1356CrossRefPubMed
9.
go back to reference Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112:1–23CrossRefPubMed Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112:1–23CrossRefPubMed
10.
go back to reference Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90:4459–4472PubMed Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90:4459–4472PubMed
11.
go back to reference Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102:2096–2105PubMed Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102:2096–2105PubMed
12.
go back to reference Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915CrossRefPubMed Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915CrossRefPubMed
13.
go back to reference Feng D, Nagy JA, Dvorak HF, Dvorak AM (2002) Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc Res Tech 57:289–326CrossRefPubMed Feng D, Nagy JA, Dvorak HF, Dvorak AM (2002) Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc Res Tech 57:289–326CrossRefPubMed
14.
go back to reference Gowans JL, Knight EJ (1964) The route of recirculation of lymphocytes in the rat. Proc R Soc Lond B Biol 159:257–282 Gowans JL, Knight EJ (1964) The route of recirculation of lymphocytes in the rat. Proc R Soc Lond B Biol 159:257–282
15.
go back to reference Gotsch U, Borges E, Bosse R, Böggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110:583–588PubMed Gotsch U, Borges E, Bosse R, Böggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110:583–588PubMed
16.
go back to reference Greenwood J, Howes R, Lightman S (1994) The blood-retinal barrier in experimental autoimmune uveoretinitis-leukocyte interactions and functional damage. Lab Invest 70:39–52PubMed Greenwood J, Howes R, Lightman S (1994) The blood-retinal barrier in experimental autoimmune uveoretinitis-leukocyte interactions and functional damage. Lab Invest 70:39–52PubMed
17.
go back to reference Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology 86:408–415PubMed Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology 86:408–415PubMed
18.
go back to reference Humble JG, Jayne WHW, Pulvertaft RJV (1956) Biological interaction between lymphocytes and other cells. Br J Haematol 2:283–294PubMed Humble JG, Jayne WHW, Pulvertaft RJV (1956) Biological interaction between lymphocytes and other cells. Br J Haematol 2:283–294PubMed
19.
go back to reference Johnson-Léger C, Imhof BA (2003) Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res 314:93–105CrossRefPubMed Johnson-Léger C, Imhof BA (2003) Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res 314:93–105CrossRefPubMed
20.
go back to reference Laschinger M, Vajkoczy P, Engelhardt B (2002) Encephalitogenic T cells use LFA-1 during transendothelial migration but not during capture and adhesion in spinal cord microvessels in vivo. Eur J Immunol 32:3598–3606CrossRefPubMed Laschinger M, Vajkoczy P, Engelhardt B (2002) Encephalitogenic T cells use LFA-1 during transendothelial migration but not during capture and adhesion in spinal cord microvessels in vivo. Eur J Immunol 32:3598–3606CrossRefPubMed
21.
go back to reference Lechner F, Sahrbacher U, Suter T, Frei K, Brockhaus M, Koedel U, Fontana A (2000) Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J Infect Dis 182:978–982CrossRefPubMed Lechner F, Sahrbacher U, Suter T, Frei K, Brockhaus M, Koedel U, Fontana A (2000) Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J Infect Dis 182:978–982CrossRefPubMed
22.
go back to reference Lossinski AS, Badmajew V, Robson JA, Moretz RC, Wisniewski H, M (1989) Sites of egress of inflammatory cells and horseradish peroxidase transport across the blood-brain barrier in a murine model of chronic relapsing experimental allergic encephalomyelitis. Acta Neuropathol 78:359–371PubMed Lossinski AS, Badmajew V, Robson JA, Moretz RC, Wisniewski H, M (1989) Sites of egress of inflammatory cells and horseradish peroxidase transport across the blood-brain barrier in a murine model of chronic relapsing experimental allergic encephalomyelitis. Acta Neuropathol 78:359–371PubMed
23.
go back to reference Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK (2002) Leukocyte transendothelial migration: a junctional affair. Semin Immunol 14:105–113CrossRefPubMed Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK (2002) Leukocyte transendothelial migration: a junctional affair. Semin Immunol 14:105–113CrossRefPubMed
24.
go back to reference Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T cell interaction with ICAM-1/ICAM-2-double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683CrossRefPubMed Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T cell interaction with ICAM-1/ICAM-2-double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683CrossRefPubMed
25.
go back to reference Marchesi VT, Gowans JL (1964) The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc R Soc Lond B Biol Sci 159:283–290PubMed Marchesi VT, Gowans JL (1964) The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc R Soc Lond B Biol Sci 159:283–290PubMed
26.
go back to reference Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32:121–182PubMed Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32:121–182PubMed
27.
go back to reference McMenamin PG, Forrester JV, Steptoe RJ, Dua HS (1992) Ultrastructural pathology of experimental autoimmune uveitis. Quantitative evidence of activation and possible high endothelial venule-like changes in retinal vascular endothelium. Lab Invest 67:42–55PubMed McMenamin PG, Forrester JV, Steptoe RJ, Dua HS (1992) Ultrastructural pathology of experimental autoimmune uveitis. Quantitative evidence of activation and possible high endothelial venule-like changes in retinal vascular endothelium. Lab Invest 67:42–55PubMed
28.
go back to reference Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 6:327–334 Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 6:327–334
29.
go back to reference Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460CrossRefPubMed Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460CrossRefPubMed
30.
go back to reference Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 147:2913–2921PubMed Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 147:2913–2921PubMed
31.
go back to reference Raine CS, Cannella B, Duijvestijn AM, Cross AH (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest 63:476–489PubMed Raine CS, Cannella B, Duijvestijn AM, Cross AH (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest 63:476–489PubMed
32.
go back to reference Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 28:3086–3099CrossRefPubMed Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 28:3086–3099CrossRefPubMed
33.
go back to reference Tavassoli M (1986) Modulation of megakaryocyte emperipolesis by phlebotomy: megakaryocytes as a component of marrow-blood barrier. Blood Cells 12:205–216PubMed Tavassoli M (1986) Modulation of megakaryocyte emperipolesis by phlebotomy: megakaryocytes as a component of marrow-blood barrier. Blood Cells 12:205–216PubMed
34.
go back to reference Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565CrossRefPubMed Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565CrossRefPubMed
35.
go back to reference Wakelin MW, Sanz MJ, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184:229–239CrossRefPubMed Wakelin MW, Sanz MJ, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184:229–239CrossRefPubMed
36.
go back to reference Wekerle H, Engelhardt B, Risau W, Meyermann R (1990) Passage of lymphocytes across the blood-brain barrier in health and disease. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood-brain barrier. Elsevier, Amsterdam, pp 439–445 Wekerle H, Engelhardt B, Risau W, Meyermann R (1990) Passage of lymphocytes across the blood-brain barrier in health and disease. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood-brain barrier. Elsevier, Amsterdam, pp 439–445
37.
go back to reference Wekerle H, Engelhardt B, Risau W, Meyermann R (1991) Interaction of T lymphocytes with cerebral endothelial cells in vitro. Brain Pathol 1:107–114PubMed Wekerle H, Engelhardt B, Risau W, Meyermann R (1991) Interaction of T lymphocytes with cerebral endothelial cells in vitro. Brain Pathol 1:107–114PubMed
38.
go back to reference Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMed Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMed
39.
go back to reference Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-Selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152PubMed Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-Selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152PubMed
Metadata
Title
Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact
Authors
Hartwig Wolburg
Karen Wolburg-Buchholz
Britta Engelhardt
Publication date
01-02-2005
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 2/2005
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-004-0928-x

Other articles of this Issue 2/2005

Acta Neuropathologica 2/2005 Go to the issue