Skip to main content
Top
Published in: International Journal of Colorectal Disease 4/2015

01-04-2015 | Original Article

Coadministration of basic fibroblast growth factor-loaded polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence

Authors: Heung-Kwon Oh, Hye Seung Lee, Jin Ho Lee, Se Heang Oh, Jae-Young Lim, Soyeon Ahn, Sung-Bum Kang

Published in: International Journal of Colorectal Disease | Issue 4/2015

Login to get access

Abstract

Purpose

Basic fibroblastic growth factor (bFGF), a member of the heparin-binding growth factor family, regulates muscle differentiation. We investigated whether coadministration of autologous myoblasts and bFGF-loaded polycaprolactone beads could improve sphincter recovery in a dog model of fecal incontinence (FI).

Methods

FI was induced by resecting 25 % of the posterior anal sphincter in ten mongrel dogs. One month later, the dogs were randomized to receive either PKH-26-labeled autologous myoblasts alone (M group, five dogs) or autologous myoblasts and bFGF-loaded polycaprolactone beads (MBG group, five dogs). The outcomes included anal manometry, compound muscle action potentials (CMAPs) of the pudendal nerve, and histology.

Results

The increase in anal contractile pressure over 3 months was significantly greater in the MBG group (from 4.85 to 6.83 mmHg) than that in the M group (from 4.94 to 4.25 mmHg), with a coefficient for the difference in recovery rate of 2.672 (95 % confidence interval [CI] 0.962 to 4.373, p = 0.002). The change in the CMAP amplitude was also significantly greater in the MBG group (from 0.59 to 1.56 mV) than that in the M group (from 0.81 to 0.67 mV) (coefficient 1.114, 95 % CI 0.43 to 1.80, p = 0.001). Labeled cells were detected in 2/5 (40 %) and 5/5 (100 %) dogs in the M and MBG groups, respectively.

Conclusion

Coadministration of bFGF-loaded PCL beads and autologous myoblasts improved the recovery of sphincter function in a dog model of FI and had better outcomes than cell-based therapy alone.
Appendix
Available only for authorised users
Literature
4.
go back to reference Lorenzi B, Pessina F, Lorenzoni P, Urbani S, Vernillo R, Sgaragli G, Gerli R, Mazzanti B, Bosi A, Saccardi R, Lorenzi M (2008) Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum 51(4):411–420. doi:10.1007/s10350-007-9153-8 CrossRefPubMed Lorenzi B, Pessina F, Lorenzoni P, Urbani S, Vernillo R, Sgaragli G, Gerli R, Mazzanti B, Bosi A, Saccardi R, Lorenzi M (2008) Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum 51(4):411–420. doi:10.​1007/​s10350-007-9153-8 CrossRefPubMed
5.
go back to reference Kajbafzadeh AM, Elmi A, Talab SS, Esfahani SA, Tourchi A (2010) Functional external anal sphincter reconstruction for treatment of anal incontinence using muscle progenitor cell auto grafting. Dis Colon Rectum 53(10):1415–1421. doi:10.1007/DCR.0b013e3181e53088 CrossRefPubMed Kajbafzadeh AM, Elmi A, Talab SS, Esfahani SA, Tourchi A (2010) Functional external anal sphincter reconstruction for treatment of anal incontinence using muscle progenitor cell auto grafting. Dis Colon Rectum 53(10):1415–1421. doi:10.​1007/​DCR.​0b013e3181e53088​ CrossRefPubMed
8.
go back to reference Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165CrossRefPubMed Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165CrossRefPubMed
9.
go back to reference Fallon JF, Lopez A, Ros MA, Savage MP, Olwin BB, Simandl BK (1994) FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264(5155):104–107CrossRefPubMed Fallon JF, Lopez A, Ros MA, Savage MP, Olwin BB, Simandl BK (1994) FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264(5155):104–107CrossRefPubMed
11.
go back to reference Riley BB, Savage MP, Simandl BK, Olwin BB, Fallon JF (1993) Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118(1):95–104PubMed Riley BB, Savage MP, Simandl BK, Olwin BB, Fallon JF (1993) Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118(1):95–104PubMed
14.
go back to reference Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287CrossRefPubMed Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287CrossRefPubMed
18.
go back to reference Saihara R, Komuro H, Urita Y, Hagiwara K, Kaneko M (2009) Myoblast transplantation to defecation muscles in a rat model: a possible treatment strategy for fecal incontinence after the repair of imperforate anus. Pediatr Surg Int 25(11):981–986. doi:10.1007/s00383-009-2454-3 CrossRefPubMed Saihara R, Komuro H, Urita Y, Hagiwara K, Kaneko M (2009) Myoblast transplantation to defecation muscles in a rat model: a possible treatment strategy for fecal incontinence after the repair of imperforate anus. Pediatr Surg Int 25(11):981–986. doi:10.​1007/​s00383-009-2454-3 CrossRefPubMed
20.
go back to reference Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata J, Umezawa A (2003) Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. J Cell Physiol 194(1):45–53. doi:10.1002/jcp.10185 CrossRefPubMed Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata J, Umezawa A (2003) Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. J Cell Physiol 194(1):45–53. doi:10.​1002/​jcp.​10185 CrossRefPubMed
21.
go back to reference Oh SH, Lee JH (2013) Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater 8(1):014101CrossRefPubMed Oh SH, Lee JH (2013) Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater 8(1):014101CrossRefPubMed
22.
23.
go back to reference Kudla AJ, John ML, Bowen-Pope DF, Rainish B, Olwin BB (1995) A requirement for fibroblast growth factor in regulation of skeletal muscle growth and differentiation cannot be replaced by activation of platelet-derived growth factor signaling pathways. Mol Cell Biol 15(6):3238–3246PubMedCentralPubMed Kudla AJ, John ML, Bowen-Pope DF, Rainish B, Olwin BB (1995) A requirement for fibroblast growth factor in regulation of skeletal muscle growth and differentiation cannot be replaced by activation of platelet-derived growth factor signaling pathways. Mol Cell Biol 15(6):3238–3246PubMedCentralPubMed
25.
go back to reference Anderson JE, Mitchell CM, McGeachie JK, Grounds MD (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice. Exp Cell Res 216(2):325–334. doi:10.1006/excr.1995.1041 CrossRefPubMed Anderson JE, Mitchell CM, McGeachie JK, Grounds MD (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice. Exp Cell Res 216(2):325–334. doi:10.​1006/​excr.​1995.​1041 CrossRefPubMed
26.
go back to reference Iwata Y, Ozaki N, Hirata H, Sugiura Y, Horii E, Nakao E, Tatebe M, Yazaki N, Hattori T, Majima M, Ishiguro N (2006) Fibroblast growth factor-2 enhances functional recovery of reinnervated muscle. Muscle Nerve 34(5):623–630. doi:10.1002/mus.20634 CrossRefPubMed Iwata Y, Ozaki N, Hirata H, Sugiura Y, Horii E, Nakao E, Tatebe M, Yazaki N, Hattori T, Majima M, Ishiguro N (2006) Fibroblast growth factor-2 enhances functional recovery of reinnervated muscle. Muscle Nerve 34(5):623–630. doi:10.​1002/​mus.​20634 CrossRefPubMed
27.
go back to reference Lefaucheur JP, Sebille A (1995) Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett 202(1–2):121–124CrossRefPubMed Lefaucheur JP, Sebille A (1995) Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett 202(1–2):121–124CrossRefPubMed
29.
go back to reference Hagege AA, Carrion C, Menasche P, Vilquin JT, Duboc D, Marolleau JP, Desnos M, Bruneval P (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361(9356):491–492. doi:10.1016/S0140-6736(03)12458-0 CrossRefPubMed Hagege AA, Carrion C, Menasche P, Vilquin JT, Duboc D, Marolleau JP, Desnos M, Bruneval P (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361(9356):491–492. doi:10.​1016/​S0140-6736(03)12458-0 CrossRefPubMed
Metadata
Title
Coadministration of basic fibroblast growth factor-loaded polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence
Authors
Heung-Kwon Oh
Hye Seung Lee
Jin Ho Lee
Se Heang Oh
Jae-Young Lim
Soyeon Ahn
Sung-Bum Kang
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Colorectal Disease / Issue 4/2015
Print ISSN: 0179-1958
Electronic ISSN: 1432-1262
DOI
https://doi.org/10.1007/s00384-015-2121-1

Other articles of this Issue 4/2015

International Journal of Colorectal Disease 4/2015 Go to the issue