Skip to main content
Top
Published in: International Journal of Colorectal Disease 1/2012

01-01-2012 | Original Article

Downregulation of Notch-1/Jagged-2 in human colon tissues from Hirschsprung disease patients

Authors: Huimin Jia, Keren Zhang, Qingjiang Chen, Hong Gao, Weilin Wang

Published in: International Journal of Colorectal Disease | Issue 1/2012

Login to get access

Abstract

Purpose

Recent studies have shown that the Notch pathways play important roles in the differentiation and development of neurons. Hirschsprung disease (HSCR) is characterized by the absence of intramural ganglion cells in the nerve plexuses of the distal gut. However, putative Notch function in enteric nervous system (ENS) development and the etiology of HSCR is unknown.

Materials and methods

The aganglionosis segments of 30 HSCR patients were introduced to investigate the expression pattern of Notch-1 and Jagged-2 using immunohistochemical staining, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot analysis.

Results

Intensive Notch-1 and Jagged-2 staining was detected in the submucosal and the myenteric plexuses in normal or oligoganglionosis segments. Aganglionosis segments from HSCR patients contained no plexuses and thus not labeled with Notch-1 and Jagged-2. Western blot analysis revealed reduced Notch-1 and Jagged-2 protein levels, and RT-PCR revealed reduced Notch-1 and Jagged-2 mRNA in the aganglionosis segments of HSCR patients.

Conclusions

This study is the first illustration of Notch-1 and Jagged-2 expression in human tissues from non-cancerous disease and sets up the base for further investigations of Notch function in ENS development and intestinal motility.
Literature
1.
go back to reference Sander GR, Brookes SJ, Powell BC (2003) Expression of Notch1 and Jagged2 in the enteric nervous system. J Histochem Cytochem 51:969–972PubMedCrossRef Sander GR, Brookes SJ, Powell BC (2003) Expression of Notch1 and Jagged2 in the enteric nervous system. J Histochem Cytochem 51:969–972PubMedCrossRef
2.
go back to reference Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14PubMedCrossRef Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14PubMedCrossRef
3.
go back to reference Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136:1–19PubMedCrossRef Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136:1–19PubMedCrossRef
4.
go back to reference Angrist M, Bolk S, Thiel B et al (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4:821–830PubMedCrossRef Angrist M, Bolk S, Thiel B et al (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4:821–830PubMedCrossRef
5.
go back to reference Attie T, Pelet A, Edery P et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4:1381–1386PubMedCrossRef Attie T, Pelet A, Edery P et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4:1381–1386PubMedCrossRef
6.
go back to reference Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell linederived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14:341–344PubMedCrossRef Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell linederived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14:341–344PubMedCrossRef
7.
go back to reference Salomon R, Attie T, Pelet A et al (1996) Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 14:345–347PubMedCrossRef Salomon R, Attie T, Pelet A et al (1996) Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 14:345–347PubMedCrossRef
8.
go back to reference Doray B, Salomon R, Amiel J et al (1998) Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 7:1449–1452PubMedCrossRef Doray B, Salomon R, Amiel J et al (1998) Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 7:1449–1452PubMedCrossRef
9.
go back to reference Puffenberger EG, Hosoda K, Washington SS et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79:1257–1266PubMedCrossRef Puffenberger EG, Hosoda K, Washington SS et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79:1257–1266PubMedCrossRef
10.
go back to reference Bidaud C, Salomon R, Van Camp G et al (1997) Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet 5:247–251PubMed Bidaud C, Salomon R, Van Camp G et al (1997) Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet 5:247–251PubMed
11.
go back to reference Hofstra RM, Valdenaire O, Arch E et al (1999) A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 64:304–308PubMedCrossRef Hofstra RM, Valdenaire O, Arch E et al (1999) A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 64:304–308PubMedCrossRef
12.
go back to reference Pingault V, Bondurand N, Kuhlbrodt K et al (1998) SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 18:171–173PubMedCrossRef Pingault V, Bondurand N, Kuhlbrodt K et al (1998) SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 18:171–173PubMedCrossRef
13.
go back to reference Wakamatsu N, Yamada Y, Yamada K et al (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370PubMedCrossRef Wakamatsu N, Yamada Y, Yamada K et al (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370PubMedCrossRef
14.
go back to reference Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581PubMedCrossRef Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581PubMedCrossRef
15.
go back to reference Kidd S, Kelley MR, Young MW (1986) Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6:3094–3108PubMed Kidd S, Kelley MR, Young MW (1986) Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6:3094–3108PubMed
16.
go back to reference Ellisen LW, Bird J, West DC et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661PubMedCrossRef Ellisen LW, Bird J, West DC et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661PubMedCrossRef
17.
go back to reference Weinmaster G, Roberts VJ, Lemke G (1992) Notch2: a second mammalian Notch gene. Development 116:931–941PubMed Weinmaster G, Roberts VJ, Lemke G (1992) Notch2: a second mammalian Notch gene. Development 116:931–941PubMed
18.
go back to reference Lardelli M, Dahlstrand J, Lendahl U (1994) The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech Dev 46:123–136PubMedCrossRef Lardelli M, Dahlstrand J, Lendahl U (1994) The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech Dev 46:123–136PubMedCrossRef
19.
go back to reference Uyttendaele H, Marazzi G, Wu G et al (1996) Notch4/int-3, a mammary proto-oncogene is an endothelial cell-specific mammalian Notch gene. Development 122:2251–2259PubMed Uyttendaele H, Marazzi G, Wu G et al (1996) Notch4/int-3, a mammary proto-oncogene is an endothelial cell-specific mammalian Notch gene. Development 122:2251–2259PubMed
20.
go back to reference Tanigaki K, Nogaki F, Takahashi J et al (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55PubMedCrossRef Tanigaki K, Nogaki F, Takahashi J et al (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55PubMedCrossRef
21.
go back to reference Morrison SJ, Perez SE, Qiao Z et al (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510PubMedCrossRef Morrison SJ, Perez SE, Qiao Z et al (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510PubMedCrossRef
22.
go back to reference Hojo M, Ohtsuka T, Hashimoto N et al (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522PubMed Hojo M, Ohtsuka T, Hashimoto N et al (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522PubMed
23.
go back to reference Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404PubMedCrossRef Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404PubMedCrossRef
24.
25.
go back to reference Berezovska O, McLean P, Knowles R et al (1999) Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93:433–439PubMedCrossRef Berezovska O, McLean P, Knowles R et al (1999) Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93:433–439PubMedCrossRef
26.
go back to reference Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci 3:30–40PubMedCrossRef Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci 3:30–40PubMedCrossRef
27.
go back to reference Shaye DD, Greenwald I (2002) Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420:686–690PubMedCrossRef Shaye DD, Greenwald I (2002) Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420:686–690PubMedCrossRef
28.
go back to reference Weijzen S, Rizzo P, Braid M et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8:979–986PubMedCrossRef Weijzen S, Rizzo P, Braid M et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8:979–986PubMedCrossRef
Metadata
Title
Downregulation of Notch-1/Jagged-2 in human colon tissues from Hirschsprung disease patients
Authors
Huimin Jia
Keren Zhang
Qingjiang Chen
Hong Gao
Weilin Wang
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
International Journal of Colorectal Disease / Issue 1/2012
Print ISSN: 0179-1958
Electronic ISSN: 1432-1262
DOI
https://doi.org/10.1007/s00384-011-1295-4

Other articles of this Issue 1/2012

International Journal of Colorectal Disease 1/2012 Go to the issue