Skip to main content
Top
Published in: Pediatric Surgery International 1/2023

01-12-2023 | Original Article

Downregulation of miR-144 blocked the proliferation and invasion of nerve cells in Hirschsprung disease by regulating Transcription Factor AP 4 (TFAP4)

Authors: Huiming Zheng, Dianming Wu, Hao Chen, Jianxi Bai, Yifan Fang

Published in: Pediatric Surgery International | Issue 1/2023

Login to get access

Abstract

Background

Hirschsprung’s disease (HSCR) is characterized by a dysfunction of enteric neural crest cells (ENCCs) proliferation, migration and premature apoptosis during embryonic development, resulting in aganglionic colon. Our aim is to explore the role of miR-144 with its target gene Transcription Factor AP 4 (TFAP4) in nerve cells in HSCR.

Methods

The relative expression levels of miR-144 in HSCR colon samples were detected by quantitative real-time PCR (RT-qPCR). Western blot assays were conducted to investigate the TFAP4 protein expressing level. The interaction of miR-144 and TFAP4 was predicted with bioinformatics analysis and examined with luciferase reporter assays. Overexpression or knockdown of miR-144 and TFAP4 in 293T and SH-SY5Y cell lines was applied. Cell proliferation, migration and invasion were detected by CCK-8 assays, Transwell migration and invasion assays. Cell cycle and apoptosis was examined by flow cytometric analysis.

Results

Downregulation of miR-144 and upregulation of TFAP4 were shown in HSCR. Luciferase reporter assay indicated that miR-144 reduced luciferase activity in 293T and SH-SY5Y transfected with TFAP4-WT-3UTR luciferase reporter and confirmed TFAP4 was the downstream target gene of miR-144. Data showed that miR-144 promoted the cell proliferation, migration and invasion of 293T and SH-SY5Y, while TFAP4 blocked the cell proliferation, migration and invasion. TFAP4 overexpression reversed the miR-144-mediated cell proliferation, migration and invasion of 293T and SH-SY5Y.

Conclusions

Downregulation of miR-144 blocked the cell proliferation and migration of nerve cells via targeting TFAP4 and contributed to the pathogenesis of HSCR. This provides an innovative and candidate target for treatment of HSCR.
Appendix
Available only for authorised users
Literature
2.
go back to reference Heuckeroth RO (2018) Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15(3):152–167CrossRefPubMed Heuckeroth RO (2018) Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15(3):152–167CrossRefPubMed
3.
4.
5.
go back to reference Sergi CM et al (2017) Hirschsprung’s disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res 81(1–2):177–191CrossRefPubMed Sergi CM et al (2017) Hirschsprung’s disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res 81(1–2):177–191CrossRefPubMed
6.
go back to reference Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110CrossRefPubMed Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110CrossRefPubMed
7.
go back to reference Saliminejad K et al (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465CrossRefPubMed Saliminejad K et al (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465CrossRefPubMed
8.
go back to reference Hong M et al (2022) Hirschsprung’s disease: key microRNAs and target genes. Pediatr Res 92(3):737–747CrossRefPubMed Hong M et al (2022) Hirschsprung’s disease: key microRNAs and target genes. Pediatr Res 92(3):737–747CrossRefPubMed
9.
go back to reference Cheng C et al (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288(19):13748–13761CrossRefPubMedPubMedCentral Cheng C et al (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288(19):13748–13761CrossRefPubMedPubMedCentral
10.
go back to reference Kumar S et al (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94CrossRefPubMed Kumar S et al (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94CrossRefPubMed
11.
go back to reference Li T et al (2022) Inhibition of Long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered 13(1):1702–1716CrossRefPubMedPubMedCentral Li T et al (2022) Inhibition of Long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered 13(1):1702–1716CrossRefPubMedPubMedCentral
12.
go back to reference Zhong SJ et al (2021) MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg 121(1):95–106CrossRefPubMed Zhong SJ et al (2021) MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg 121(1):95–106CrossRefPubMed
13.
go back to reference Pan B et al (2022) Altered expression levels of miR-144-3p and ATP1B2 are associated with schizophrenia. World J Biol Psychiatry 23(9):666–676CrossRefPubMed Pan B et al (2022) Altered expression levels of miR-144-3p and ATP1B2 are associated with schizophrenia. World J Biol Psychiatry 23(9):666–676CrossRefPubMed
14.
go back to reference Pan B et al (2023) Dysfunctional microRNA-144-3p/ZBTB20/ERK/CREB1 signalling pathway is associated with MK-801-induced schizophrenia-like abnormalities. Brain Res 1798:148153CrossRefPubMed Pan B et al (2023) Dysfunctional microRNA-144-3p/ZBTB20/ERK/CREB1 signalling pathway is associated with MK-801-induced schizophrenia-like abnormalities. Brain Res 1798:148153CrossRefPubMed
15.
go back to reference Wang J et al (2022) Targeting MicroRNA-144/451-AKT-GSK3beta axis affects the proliferation and differentiation of radial glial cells in the mouse hippocampal dentate gyrus. ACS Chem Neurosci 13(7):897–909CrossRefPubMed Wang J et al (2022) Targeting MicroRNA-144/451-AKT-GSK3beta axis affects the proliferation and differentiation of radial glial cells in the mouse hippocampal dentate gyrus. ACS Chem Neurosci 13(7):897–909CrossRefPubMed
16.
go back to reference Wong MM et al (2021) Transcription factor AP4 mediates cell fate decisions: to divide, age, or die. Cancers (Basel) 13(4):676CrossRefPubMed Wong MM et al (2021) Transcription factor AP4 mediates cell fate decisions: to divide, age, or die. Cancers (Basel) 13(4):676CrossRefPubMed
17.
go back to reference Carter TC et al (2012) Hirschsprung’s disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation. J Hum Genet 57(8):485–493CrossRefPubMedPubMedCentral Carter TC et al (2012) Hirschsprung’s disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation. J Hum Genet 57(8):485–493CrossRefPubMedPubMedCentral
18.
go back to reference Heiss CN, Olofsson LE (2019) The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol 31(5):e12684CrossRefPubMed Heiss CN, Olofsson LE (2019) The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol 31(5):e12684CrossRefPubMed
19.
go back to reference Tang W et al (2013) Aberrant reduction of MiR-141 increased CD47/CUL3 in Hirschsprung’s disease. Cell Physiol Biochem 32(6):1655–1667CrossRefPubMed Tang W et al (2013) Aberrant reduction of MiR-141 increased CD47/CUL3 in Hirschsprung’s disease. Cell Physiol Biochem 32(6):1655–1667CrossRefPubMed
20.
go back to reference Lei H et al (2014) MiR-195 affects cell migration and cell proliferation by down-regulating DIEXF in Hirschsprung’s disease. BMC Gastroenterol 14:123CrossRefPubMedPubMedCentral Lei H et al (2014) MiR-195 affects cell migration and cell proliferation by down-regulating DIEXF in Hirschsprung’s disease. BMC Gastroenterol 14:123CrossRefPubMedPubMedCentral
21.
go back to reference Sharan A et al (2015) Down-regulation of miR-206 is associated with Hirschsprung disease and suppresses cell migration and proliferation in cell models. Sci Rep 5:9302CrossRefPubMedPubMedCentral Sharan A et al (2015) Down-regulation of miR-206 is associated with Hirschsprung disease and suppresses cell migration and proliferation in cell models. Sci Rep 5:9302CrossRefPubMedPubMedCentral
22.
23.
go back to reference Xia RP et al (2022) Circ-ITCH overexpression promoted cell proliferation and migration in Hirschsprung disease through miR-146b-5p/RET axis. Pediatr Res 92(4):1008–1016CrossRefPubMed Xia RP et al (2022) Circ-ITCH overexpression promoted cell proliferation and migration in Hirschsprung disease through miR-146b-5p/RET axis. Pediatr Res 92(4):1008–1016CrossRefPubMed
24.
go back to reference Li L et al (2022) Aberrant expression of LINC00346 regulates cell migration and proliferation via competitively binding to miRNA-148a-3p/Dnmt1 in Hirschsprung’s disease. Pediatr Surg Int 38(9):1273–1281CrossRefPubMed Li L et al (2022) Aberrant expression of LINC00346 regulates cell migration and proliferation via competitively binding to miRNA-148a-3p/Dnmt1 in Hirschsprung’s disease. Pediatr Surg Int 38(9):1273–1281CrossRefPubMed
25.
go back to reference Virtanen VB et al (2019) Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet 62(4):229–234CrossRefPubMed Virtanen VB et al (2019) Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet 62(4):229–234CrossRefPubMed
26.
go back to reference Lindahl M et al (2000) Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol Cell Neurosci 15(6):522–533CrossRefPubMed Lindahl M et al (2000) Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol Cell Neurosci 15(6):522–533CrossRefPubMed
27.
go back to reference Wang G et al (2021) MiR-195-5p inhibits proliferation and invasion of nerve cells in Hirschsprung disease by targeting GFRA4. Mol Cell Biochem 476(5):2061–2073CrossRefPubMed Wang G et al (2021) MiR-195-5p inhibits proliferation and invasion of nerve cells in Hirschsprung disease by targeting GFRA4. Mol Cell Biochem 476(5):2061–2073CrossRefPubMed
28.
go back to reference Niu C et al (2012) Downregulation and growth inhibitory role of FHL1 in lung cancer. Int J Cancer 130(11):2549–2556CrossRefPubMed Niu C et al (2012) Downregulation and growth inhibitory role of FHL1 in lung cancer. Int J Cancer 130(11):2549–2556CrossRefPubMed
30.
go back to reference Wang Y et al (2018) Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells. Mol Cell Biochem 443(1–2):193–204CrossRefPubMed Wang Y et al (2018) Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells. Mol Cell Biochem 443(1–2):193–204CrossRefPubMed
Metadata
Title
Downregulation of miR-144 blocked the proliferation and invasion of nerve cells in Hirschsprung disease by regulating Transcription Factor AP 4 (TFAP4)
Authors
Huiming Zheng
Dianming Wu
Hao Chen
Jianxi Bai
Yifan Fang
Publication date
01-12-2023
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Surgery International / Issue 1/2023
Print ISSN: 0179-0358
Electronic ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-023-05530-x

Other articles of this Issue 1/2023

Pediatric Surgery International 1/2023 Go to the issue