Skip to main content
Top
Published in: Pediatric Surgery International 11/2016

01-11-2016 | Original Article

Effects of SEMA3 polymorphisms in Hirschsprung disease patients

Authors: Gunadi, Akhmad Makhmudi, Nunik Agustriani, Rochadi

Published in: Pediatric Surgery International | Issue 11/2016

Login to get access

Abstract

Purpose

Recently, genetic markers within a locus on 7q21.11 containing the SEMA3A, SEMA3C, and SEMA3D genes were reported to be associated with Hirschsprung disease (HSCR). Here, we investigated three polymorphisms, rs1583147, rs12707682, and rs11766001, at this locus to determine their potential contributions to the susceptibility of Indonesian HSCR patients.

Methods

Three variants were analyzed in 60 non-syndromic HSCR patients and 118 ethnicity-matched controls for association studies by genotyping.

Results

The risk allele frequencies of SEMA3 rs12707682 (allele C) and rs1583147 (allele T) is higher in cases, 53 and 23 %, than in controls, at 42 and 13 %, respectively. However, these frequency differences were not statistically significant with p value of 0.06 and 0.023, respectively. These findings were consistent with transmission disequilibrium test results with p values of 0.041 and 0.11 for rs12707682 and rs1583147, respectively. Furthermore, the frequencies of SEMA3 rs11766001 risk allele in HSCR cases and controls were 1.7 and 0.8 %, respectively.

Conclusions

SEMA3 rs12707682 and rs1583147 variants are not common risk factors for HSCR in Indonesia. The rarity of the SEMA3 rs11766001 polymorphism in Indonesian population might be due to a founder effect.
Literature
1.
go back to reference Chakravarti A, Lyonnet S (2001) Hirschsprung disease. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler K, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6231–6255 Chakravarti A, Lyonnet S (2001) Hirschsprung disease. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler K, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6231–6255
2.
go back to reference Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14CrossRefPubMed Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14CrossRefPubMed
3.
go back to reference Alves MM, Sribudiani Y, Brouwer RW et al (2013) Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev Biol 382:320–329CrossRefPubMed Alves MM, Sribudiani Y, Brouwer RW et al (2013) Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev Biol 382:320–329CrossRefPubMed
4.
go back to reference Kapoor A, Jiang Q, Chatterjee S et al (2015) Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet 24:2997–3003CrossRefPubMedPubMedCentral Kapoor A, Jiang Q, Chatterjee S et al (2015) Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet 24:2997–3003CrossRefPubMedPubMedCentral
5.
go back to reference Emison ES, Garcia-Barcelo M, Grice EA et al (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87:60–74CrossRefPubMedPubMedCentral Emison ES, Garcia-Barcelo M, Grice EA et al (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87:60–74CrossRefPubMedPubMedCentral
6.
go back to reference Gunadi, Kapoor A, Ling AY et al (2014) Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J Pediatr Surg 49:1614–1618CrossRefPubMedPubMedCentral Gunadi, Kapoor A, Ling AY et al (2014) Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J Pediatr Surg 49:1614–1618CrossRefPubMedPubMedCentral
7.
go back to reference Gunadi, Dwihantoro A, Iskandar K et al (2016) Accuracy of PCR-RFLP for RET rs2435357 genotyping as Hirschsprung risk. J Surg Res 203:91–94CrossRefPubMed Gunadi, Dwihantoro A, Iskandar K et al (2016) Accuracy of PCR-RFLP for RET rs2435357 genotyping as Hirschsprung risk. J Surg Res 203:91–94CrossRefPubMed
8.
go back to reference Genomes Project Consortium, Abecasis GR, Altshuler D et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRef Genomes Project Consortium, Abecasis GR, Altshuler D et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRef
9.
go back to reference Cahyono JA, Sadewa AH, Tasmini (2011) Aldose reductase genetic polymorphism is a risk factor of diabetics retinopathy among type 2 diabetes mellitus in Yogyakarta, Indonesia. J Med Sci 43:57–63 Cahyono JA, Sadewa AH, Tasmini (2011) Aldose reductase genetic polymorphism is a risk factor of diabetics retinopathy among type 2 diabetes mellitus in Yogyakarta, Indonesia. J Med Sci 43:57–63
10.
go back to reference Li CC (1961) Human genetics: principles and methods. McGraw Hill Book Co., New York Li CC (1961) Human genetics: principles and methods. McGraw Hill Book Co., New York
11.
go back to reference Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedPubMedCentral Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedPubMedCentral
12.
go back to reference Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentral
13.
go back to reference Zivelin A, Griffin JH, Xu X et al (1997) A single genetic origin for a common caucasian risk factor for venous thrombosis. Blood 89:397–402PubMed Zivelin A, Griffin JH, Xu X et al (1997) A single genetic origin for a common caucasian risk factor for venous thrombosis. Blood 89:397–402PubMed
14.
go back to reference Rosendaal FR, Doggen CJM, Zivelin A et al (1998) Geographic distribution of the 20210 G to A F2 variant. Thromb Haemost 79:706–708PubMed Rosendaal FR, Doggen CJM, Zivelin A et al (1998) Geographic distribution of the 20210 G to A F2 variant. Thromb Haemost 79:706–708PubMed
15.
go back to reference Makhmudi A, Sadewa AH, Aryandono T et al (2015) Effects of MTHFR c.677C>T, F2 c.20210G>A and F5 Leiden polymorphisms in gastroschisis. J Invest Surg 29:88–92CrossRefPubMed Makhmudi A, Sadewa AH, Aryandono T et al (2015) Effects of MTHFR c.677C>T, F2 c.20210G>A and F5 Leiden polymorphisms in gastroschisis. J Invest Surg 29:88–92CrossRefPubMed
16.
go back to reference Jiang Q, Arnold S, Heanue T et al (2015) Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 96:581–596CrossRefPubMedPubMedCentral Jiang Q, Arnold S, Heanue T et al (2015) Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 96:581–596CrossRefPubMedPubMedCentral
17.
go back to reference Garcia-Barcelo MM, Tang CS, Ngan ES et al (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci USA 106:2694–2699CrossRefPubMedPubMedCentral Garcia-Barcelo MM, Tang CS, Ngan ES et al (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci USA 106:2694–2699CrossRefPubMedPubMedCentral
18.
go back to reference Phusantisampan T, Sangkhathat S, Phongdara A et al (2012) Association of genetic polymorphisms in the RET protooncogene and NRG1 with Hirschsprung disease in Thai patients. J Hum Genet 57:286–293CrossRefPubMed Phusantisampan T, Sangkhathat S, Phongdara A et al (2012) Association of genetic polymorphisms in the RET protooncogene and NRG1 with Hirschsprung disease in Thai patients. J Hum Genet 57:286–293CrossRefPubMed
19.
go back to reference Luzon-Toro B, Torroglosa A, Nunez-Torres R et al (2012) Comprehensive analysis of NRG1 common and rare variants in hirschsprung patients. PLoS One 7:e36524CrossRefPubMedPubMedCentral Luzon-Toro B, Torroglosa A, Nunez-Torres R et al (2012) Comprehensive analysis of NRG1 common and rare variants in hirschsprung patients. PLoS One 7:e36524CrossRefPubMedPubMedCentral
Metadata
Title
Effects of SEMA3 polymorphisms in Hirschsprung disease patients
Authors
Gunadi
Akhmad Makhmudi
Nunik Agustriani
Rochadi
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Surgery International / Issue 11/2016
Print ISSN: 0179-0358
Electronic ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-016-3953-7

Other articles of this Issue 11/2016

Pediatric Surgery International 11/2016 Go to the issue