Skip to main content
Top
Published in: Child's Nervous System 5/2020

01-05-2020 | Review Article

The development of vision between nature and nurture: clinical implications from visual neuroscience

Authors: Giulia Purpura, Francesca Tinelli

Published in: Child's Nervous System | Issue 5/2020

Login to get access

Abstract

Background

Vision is an adaptive function and should be considered a prerequisite for neurodevelopment because it permits the organization and the comprehension of the sensory data collected by the visual system during daily life. For this reason, the influence of visual functions on neuromotor, cognitive, and emotional development has been investigated by several studies that have highlighted how visual functions can drive the organization and maturation of human behavior. Recent studies on animals and human models have indicated that visual functions mature gradually during post-natal life, and its development is closely linked to environment and experience.

Discussion

The role of vision in early brain development and some of the neuroplasticity mechanisms that have been described in the presence of cerebral damage during childhood are analyzed in this review, according to a neurorehabilitation prospective.
Literature
1.
go back to reference Barca L, Cappelli FR, di Giulio P, Staccioli S, Castelli E (2010) Outpatient assessment of neurovisual functions in children with cerebral palsy. Res Dev Disabil 31(2):488–495PubMed Barca L, Cappelli FR, di Giulio P, Staccioli S, Castelli E (2010) Outpatient assessment of neurovisual functions in children with cerebral palsy. Res Dev Disabil 31(2):488–495PubMed
2.
3.
go back to reference Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2010) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17(7):1092–1103PubMed Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2010) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17(7):1092–1103PubMed
4.
go back to reference Mercuri E et al (2007) The development of vision. Early Hum Dev 83(12):795–800PubMed Mercuri E et al (2007) The development of vision. Early Hum Dev 83(12):795–800PubMed
5.
go back to reference Braddick O, Atkinson J (2011) Development of human visual function. Vis Res 51(13):1588–1609PubMed Braddick O, Atkinson J (2011) Development of human visual function. Vis Res 51(13):1588–1609PubMed
6.
go back to reference Atkinson J (1984) Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol 3(2):61–74PubMed Atkinson J (1984) Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol 3(2):61–74PubMed
7.
go back to reference Spillmann L (2014) Receptive fields of visual neurons: the early years. Perception 43(11):1145–1176PubMed Spillmann L (2014) Receptive fields of visual neurons: the early years. Perception 43(11):1145–1176PubMed
8.
9.
go back to reference Berardi N, Pizzorusso T, Ratto GM, Maffei L (2003) Molecular basis of plasticity in the visual cortex. Trends Neurosci 26(7):369–378PubMed Berardi N, Pizzorusso T, Ratto GM, Maffei L (2003) Molecular basis of plasticity in the visual cortex. Trends Neurosci 26(7):369–378PubMed
10.
go back to reference May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17(1):205–210PubMed May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17(1):205–210PubMed
11.
go back to reference Nabel EM, Morishita H (2013) Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry 4:146PubMedPubMedCentral Nabel EM, Morishita H (2013) Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry 4:146PubMedPubMedCentral
12.
go back to reference Morrone MC (2010) Brain development: critical periods for cross-sensory plasticity. Curr Biol 20(21):R934–R936PubMed Morrone MC (2010) Brain development: critical periods for cross-sensory plasticity. Curr Biol 20(21):R934–R936PubMed
13.
go back to reference Daw NW (1998) Critical periods and amblyopia. Arch Ophthalmol 116(4):502–505PubMed Daw NW (1998) Critical periods and amblyopia. Arch Ophthalmol 116(4):502–505PubMed
14.
go back to reference Kiorpes L (2015) Visual development in primates: neural mechanisms and critical periods. Dev Neurobiol 75(10):1080–1090PubMedPubMedCentral Kiorpes L (2015) Visual development in primates: neural mechanisms and critical periods. Dev Neurobiol 75(10):1080–1090PubMedPubMedCentral
16.
go back to reference Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52PubMed Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52PubMed
17.
go back to reference Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11(1):44–52PubMed Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11(1):44–52PubMed
18.
go back to reference Werth R (2008) Cerebral blindness and plasticity of the visual system in children. A review of visual capacities in patients with occipital lesions, hemispherectomy or hydranencephaly. Restor Neurol Neurosci 26(4–5):377–389PubMed Werth R (2008) Cerebral blindness and plasticity of the visual system in children. A review of visual capacities in patients with occipital lesions, hemispherectomy or hydranencephaly. Restor Neurol Neurosci 26(4–5):377–389PubMed
20.
go back to reference Cancedda L et al (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24(20):4840–4848PubMedPubMedCentral Cancedda L et al (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24(20):4840–4848PubMedPubMedCentral
21.
go back to reference Guzzetta A, Baldini S, Bancale A, Baroncelli L, Ciucci F, Ghirri P, Putignano E, Sale A, Viegi A, Berardi N, Boldrini A, Cioni G, Maffei L (2009) Massage accelerates brain development and the maturation of visual function. J Neurosci 29(18):6042–6051PubMedPubMedCentral Guzzetta A, Baldini S, Bancale A, Baroncelli L, Ciucci F, Ghirri P, Putignano E, Sale A, Viegi A, Berardi N, Boldrini A, Cioni G, Maffei L (2009) Massage accelerates brain development and the maturation of visual function. J Neurosci 29(18):6042–6051PubMedPubMedCentral
22.
go back to reference Purpura G, Tinelli F, Bargagna S, Bozza M, Bastiani L, Cioni G (2014) Effect of early multisensory massage intervention on visual functions in infants with down syndrome. Early Hum Dev 90(12):809–813PubMed Purpura G, Tinelli F, Bargagna S, Bozza M, Bastiani L, Cioni G (2014) Effect of early multisensory massage intervention on visual functions in infants with down syndrome. Early Hum Dev 90(12):809–813PubMed
23.
go back to reference Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, de Pasquale R, Baldini S, Maffei L (2010) Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol 226(1):100–109PubMed Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, de Pasquale R, Baldini S, Maffei L (2010) Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol 226(1):100–109PubMed
24.
go back to reference Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10(1):138–145PubMed Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10(1):138–145PubMed
25.
go back to reference Sugita Y (2009) Innate face processing. Curr Opin Neurobiol 19(1):39–44PubMed Sugita Y (2009) Innate face processing. Curr Opin Neurobiol 19(1):39–44PubMed
26.
go back to reference Simion F, Leo I, Turati C, Valenza E, Dalla Barba B (2007) How face specialization emerges in the first months of life. Prog Brain Res 164:169–185PubMed Simion F, Leo I, Turati C, Valenza E, Dalla Barba B (2007) How face specialization emerges in the first months of life. Prog Brain Res 164:169–185PubMed
27.
go back to reference Valenza E, Simion F, Cassia VM, Umiltà C (1996) Face preference at birth. J Exp Psychol Hum Percept Perform 22(4):892–903PubMed Valenza E, Simion F, Cassia VM, Umiltà C (1996) Face preference at birth. J Exp Psychol Hum Percept Perform 22(4):892–903PubMed
28.
go back to reference Fraiberg S (1977) Insights from the blind. Basic Books, New York Fraiberg S (1977) Insights from the blind. Basic Books, New York
29.
go back to reference Land MF (2006) Eye movements and the control of actions in everyday life. Prog Retin Eye Res 25(3):296–324PubMed Land MF (2006) Eye movements and the control of actions in everyday life. Prog Retin Eye Res 25(3):296–324PubMed
30.
go back to reference Hood B, Atkinson J (1990) Sensory visual loss and cognitive deficits in the selective attentional system of normal infants and neurologically impaired children. Dev Med Child Neurol 32(12):1067–1077PubMed Hood B, Atkinson J (1990) Sensory visual loss and cognitive deficits in the selective attentional system of normal infants and neurologically impaired children. Dev Med Child Neurol 32(12):1067–1077PubMed
31.
go back to reference Tadic V, Pring L, Dale N (2010) Are language and social communication intact in children with congenital visual impairment at school age? J Child Psychol Psychiatry 51(6):696–705PubMed Tadic V, Pring L, Dale N (2010) Are language and social communication intact in children with congenital visual impairment at school age? J Child Psychol Psychiatry 51(6):696–705PubMed
32.
go back to reference Prechtl HF, Cioni G, Einspieler C, Bos AF, Ferrari F (2001) Role of vision on early motor development: lessons from the blind. Dev Med Child Neurol 43(3):198–201PubMed Prechtl HF, Cioni G, Einspieler C, Bos AF, Ferrari F (2001) Role of vision on early motor development: lessons from the blind. Dev Med Child Neurol 43(3):198–201PubMed
33.
go back to reference Braddick O, Atkinson J (2013) Visual control of manual actions: brain mechanisms in typical development and developmental disorders. Dev Med Child Neurol 55(Suppl 4):13–18PubMed Braddick O, Atkinson J (2013) Visual control of manual actions: brain mechanisms in typical development and developmental disorders. Dev Med Child Neurol 55(Suppl 4):13–18PubMed
34.
go back to reference Babinsky E, Braddick O, Atkinson J (2012) Infants and adults reaching in the dark. Exp Brain Res 217(2):237–249PubMed Babinsky E, Braddick O, Atkinson J (2012) Infants and adults reaching in the dark. Exp Brain Res 217(2):237–249PubMed
35.
go back to reference Hallemans A, Ortibus E, Truijen S, Meire F (2011) Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil 32(6):2069–2074PubMed Hallemans A, Ortibus E, Truijen S, Meire F (2011) Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil 32(6):2069–2074PubMed
36.
go back to reference Dale N, Sakkalou E, O'Reilly M, Springall C, de Haan M, Salt A (2017) Functional vision and cognition in infants with congenital disorders of the peripheral visual system. Dev Med Child Neurol 59(7):725–731PubMed Dale N, Sakkalou E, O'Reilly M, Springall C, de Haan M, Salt A (2017) Functional vision and cognition in infants with congenital disorders of the peripheral visual system. Dev Med Child Neurol 59(7):725–731PubMed
37.
go back to reference Mercuri E, Haataja L, Guzzetta A, Anker S, Cowan F, Rutherford M, Andrew R, Braddick O, Cioni G, Dubowitz L, Atkinson J (1999) Visual function in term infants with hypoxic-ischaemic insults: correlation with neurodevelopment at 2 years of age. Arch Dis Child Fetal Neonatal Ed 80(2):F99–F104 Mercuri E, Haataja L, Guzzetta A, Anker S, Cowan F, Rutherford M, Andrew R, Braddick O, Cioni G, Dubowitz L, Atkinson J (1999) Visual function in term infants with hypoxic-ischaemic insults: correlation with neurodevelopment at 2 years of age. Arch Dis Child Fetal Neonatal Ed 80(2):F99–F104
38.
go back to reference Guzzetta A, Mazzotti S, Tinelli F, Bancale A, Ferretti G, Battini R, Bartalena L, Boldrini A, Cioni G (2006) Early assessment of visual information processing and neurological outcome in preterm infants. Neuropediatrics 37(5):278–285 Guzzetta A, Mazzotti S, Tinelli F, Bancale A, Ferretti G, Battini R, Bartalena L, Boldrini A, Cioni G (2006) Early assessment of visual information processing and neurological outcome in preterm infants. Neuropediatrics 37(5):278–285
39.
go back to reference Cass HD, Sonksen PM, McConachie HR (1994) Developmental setback in severe visual impairment. Arch Dis Child 70(3):192–196PubMedPubMedCentral Cass HD, Sonksen PM, McConachie HR (1994) Developmental setback in severe visual impairment. Arch Dis Child 70(3):192–196PubMedPubMedCentral
40.
go back to reference Dale N, Sonksen P (2002) Developmental outcome, including setback, in young children with severe visual impairment. Dev Med Child Neurol 44(9):613–622PubMed Dale N, Sonksen P (2002) Developmental outcome, including setback, in young children with severe visual impairment. Dev Med Child Neurol 44(9):613–622PubMed
41.
go back to reference Fazzi E et al (2007) Leber’s congenital amaurosis: is there an autistic component? Dev Med Child Neurol 49(7):503–507PubMed Fazzi E et al (2007) Leber’s congenital amaurosis: is there an autistic component? Dev Med Child Neurol 49(7):503–507PubMed
42.
go back to reference Do B et al (2017) Systematic review and meta-analysis of the association of autism spectrum disorder in visually or hearing impaired children. Ophthalmic Physiol Opt 37(2):212–224PubMed Do B et al (2017) Systematic review and meta-analysis of the association of autism spectrum disorder in visually or hearing impaired children. Ophthalmic Physiol Opt 37(2):212–224PubMed
43.
go back to reference Mukaddes NM, Kilincaslan A, Kucukyazici G, Sevketoglu T, Tuncer S (2007) Autism in visually impaired individuals. Psychiatry Clin Neurosci 61(1):39–44PubMed Mukaddes NM, Kilincaslan A, Kucukyazici G, Sevketoglu T, Tuncer S (2007) Autism in visually impaired individuals. Psychiatry Clin Neurosci 61(1):39–44PubMed
44.
go back to reference Bathelt J, de Haan M, Dale NJ (2019) Adaptive behaviour and quality of life in school-age children with congenital visual disorders and different levels of visual impairment. Res Dev Disabil 85:154–162PubMed Bathelt J, de Haan M, Dale NJ (2019) Adaptive behaviour and quality of life in school-age children with congenital visual disorders and different levels of visual impairment. Res Dev Disabil 85:154–162PubMed
45.
46.
go back to reference Ricci D, Romeo DM, Gallini F, Groppo M, Cesarini L, Pisoni S, Serrao F, Papacci P, Contaldo I, Perrino F, Brogna C, Bianco F, Baranello G, Sacco A, Quintiliani M, Ometto A, Cilauro S, Mosca F, Romagnoli C, Romeo MG, Cowan F, Cioni G, Ramenghi L, Mercuri E (2011) Early visual assessment in preterm infants with and without brain lesions: correlation with visual and neurodevelopmental outcome at 12 months. Early Hum Dev 87(3):177–182PubMed Ricci D, Romeo DM, Gallini F, Groppo M, Cesarini L, Pisoni S, Serrao F, Papacci P, Contaldo I, Perrino F, Brogna C, Bianco F, Baranello G, Sacco A, Quintiliani M, Ometto A, Cilauro S, Mosca F, Romagnoli C, Romeo MG, Cowan F, Cioni G, Ramenghi L, Mercuri E (2011) Early visual assessment in preterm infants with and without brain lesions: correlation with visual and neurodevelopmental outcome at 12 months. Early Hum Dev 87(3):177–182PubMed
47.
go back to reference Guzzetta A, D’Acunto G, Rose S, Tinelli F, Boyd R, Cioni G (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52(10):891–900PubMed Guzzetta A, D’Acunto G, Rose S, Tinelli F, Boyd R, Cioni G (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52(10):891–900PubMed
48.
go back to reference Matsuba C, Soul J (2010) Clinical manifestation of cerebral visual impairment. In: Dutton GN, Bax M (eds) visual impairment in children due to damage to the brain. Mac Keith Press, London Matsuba C, Soul J (2010) Clinical manifestation of cerebral visual impairment. In: Dutton GN, Bax M (eds) visual impairment in children due to damage to the brain. Mac Keith Press, London
49.
go back to reference Guzzetta A, Fazzi B, Mercuri E, Bertuccelli B, Canapicchi R, van Hof-van Duin J, Cioni G (2001) Visual function in children with hemiplegia in the first years of life. Dev Med Child Neurol 43(5):321–329PubMed Guzzetta A, Fazzi B, Mercuri E, Bertuccelli B, Canapicchi R, van Hof-van Duin J, Cioni G (2001) Visual function in children with hemiplegia in the first years of life. Dev Med Child Neurol 43(5):321–329PubMed
50.
go back to reference Zihl J (1995) Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33(3):287–303PubMed Zihl J (1995) Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33(3):287–303PubMed
51.
52.
53.
go back to reference Weiskrantz L (1996) Blindsight revisited. Curr Opin Neurobiol 6(2):215–220PubMed Weiskrantz L (1996) Blindsight revisited. Curr Opin Neurobiol 6(2):215–220PubMed
54.
go back to reference Cowey A, Stoerig P (1991) The neurobiology of blindsight. Trends Neurosci 14(4):140–145PubMed Cowey A, Stoerig P (1991) The neurobiology of blindsight. Trends Neurosci 14(4):140–145PubMed
55.
go back to reference Tinelli F, Guzzetta A, Bertini C, Ricci D, Mercuri E, Ladavas E, Cioni G (2011) Greater sparing of visual search abilities in children after congenital rather than acquired focal brain damage. Neurorehabil Neural Repair 25(8):721–728PubMed Tinelli F, Guzzetta A, Bertini C, Ricci D, Mercuri E, Ladavas E, Cioni G (2011) Greater sparing of visual search abilities in children after congenital rather than acquired focal brain damage. Neurorehabil Neural Repair 25(8):721–728PubMed
56.
go back to reference Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere. Proc Natl Acad Sci U S A 106(31):13034–13039PubMedPubMedCentral Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere. Proc Natl Acad Sci U S A 106(31):13034–13039PubMedPubMedCentral
57.
go back to reference Tinelli F, Cicchini GM, Arrighi R, Tosetti M, Cioni G, Morrone MC (2013) Blindsight in children with congenital and acquired cerebral lesions. Cortex 49(6):1636–1647PubMed Tinelli F, Cicchini GM, Arrighi R, Tosetti M, Cioni G, Morrone MC (2013) Blindsight in children with congenital and acquired cerebral lesions. Cortex 49(6):1636–1647PubMed
58.
go back to reference Ptito A, Leh SE (2007) Neural substrates of blindsight after hemispherectomy. Neuroscientist 13(5):506–518PubMed Ptito A, Leh SE (2007) Neural substrates of blindsight after hemispherectomy. Neuroscientist 13(5):506–518PubMed
59.
go back to reference Sahraie A, Hibbard PB, Trevethan CT, Ritchie KL, Weiskrantz L (2010) Consciousness of the first order in blindsight. Proc Natl Acad Sci U S A 107(49):21217–21222PubMedPubMedCentral Sahraie A, Hibbard PB, Trevethan CT, Ritchie KL, Weiskrantz L (2010) Consciousness of the first order in blindsight. Proc Natl Acad Sci U S A 107(49):21217–21222PubMedPubMedCentral
60.
go back to reference Bourne JA, Morrone MC (2017) Plasticity of visual pathways and function in the developing brain: is the Pulvinar a crucial player? Front Syst Neurosci 11:3PubMedPubMedCentral Bourne JA, Morrone MC (2017) Plasticity of visual pathways and function in the developing brain: is the Pulvinar a crucial player? Front Syst Neurosci 11:3PubMedPubMedCentral
61.
go back to reference Payne BR, Lomber SG, Macneil MA, Cornwell P (1996) Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 34(8):741–774PubMed Payne BR, Lomber SG, Macneil MA, Cornwell P (1996) Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 34(8):741–774PubMed
62.
go back to reference Sorenson KM, Rodman HR (1999) A transient geniculo-extrastriate pathway in macaques? Implications for ‘blindsight’. Neuroreport 10(16):3295–3299PubMed Sorenson KM, Rodman HR (1999) A transient geniculo-extrastriate pathway in macaques? Implications for ‘blindsight’. Neuroreport 10(16):3295–3299PubMed
63.
go back to reference Lyon DC, Nassi JJ, Callaway EM (2010) A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65(2):270–279PubMedPubMedCentral Lyon DC, Nassi JJ, Callaway EM (2010) A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65(2):270–279PubMedPubMedCentral
64.
go back to reference Tomaiuolo F et al (1997) Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120(Pt 5):795–803PubMed Tomaiuolo F et al (1997) Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120(Pt 5):795–803PubMed
65.
go back to reference Tamietto M, Cauda F, Corazzini LL, Savazzi S, Marzi CA, Goebel R, Weiskrantz L, de Gelder B (2010) Collicular vision guides nonconscious behavior. J Cogn Neurosci 22(5):888–902PubMed Tamietto M, Cauda F, Corazzini LL, Savazzi S, Marzi CA, Goebel R, Weiskrantz L, de Gelder B (2010) Collicular vision guides nonconscious behavior. J Cogn Neurosci 22(5):888–902PubMed
66.
go back to reference Ajina S, Bridge H (2018) Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia 128:140–149PubMed Ajina S, Bridge H (2018) Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia 128:140–149PubMed
67.
go back to reference Ajina S et al (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4 Ajina S et al (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4
68.
go back to reference Mikellidou K, Frijia F, Montanaro D, Greco V, Burr DC, Morrone MC (2018) Cortical BOLD responses to moderate- and high-speed motion in the human visual cortex. Sci Rep 8(1):8357PubMedPubMedCentral Mikellidou K, Frijia F, Montanaro D, Greco V, Burr DC, Morrone MC (2018) Cortical BOLD responses to moderate- and high-speed motion in the human visual cortex. Sci Rep 8(1):8357PubMedPubMedCentral
69.
go back to reference Mikellidou K, Arrighi R, Aghakhanyan G, Tinelli F, Frijia F, Crespi S, de Masi F, Montanaro D, Morrone MC (2019) Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia 128:166–177PubMed Mikellidou K, Arrighi R, Aghakhanyan G, Tinelli F, Frijia F, Crespi S, de Masi F, Montanaro D, Morrone MC (2019) Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia 128:166–177PubMed
70.
go back to reference Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2(12 Suppl 2):S208–S219PubMed Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2(12 Suppl 2):S208–S219PubMed
71.
go back to reference Hensch TK, Bilimoria PM (2012) Re-opening windows: manipulating critical periods for brain development. Cerebrum 2012:11PubMedPubMedCentral Hensch TK, Bilimoria PM (2012) Re-opening windows: manipulating critical periods for brain development. Cerebrum 2012:11PubMedPubMedCentral
72.
go back to reference Johnston C, Cossette S, Archer J, Ranger M, Nahas-Chebli G (2009) Developing synergy to enhance the impact of nursing intervention research on patient health. Can J Nurs Res 41(4):115–121PubMed Johnston C, Cossette S, Archer J, Ranger M, Nahas-Chebli G (2009) Developing synergy to enhance the impact of nursing intervention research on patient health. Can J Nurs Res 41(4):115–121PubMed
73.
go back to reference Dale NJ, Sakkalou E, O'Reilly MA, Springall C, Sakki H, Glew S, Pissaridou E, de Haan M, Salt AT (2019) Home-based early intervention in infants and young children with visual impairment using the developmental journal: longitudinal cohort study. Dev Med Child Neurol 61(6):697–709PubMed Dale NJ, Sakkalou E, O'Reilly MA, Springall C, Sakki H, Glew S, Pissaridou E, de Haan M, Salt AT (2019) Home-based early intervention in infants and young children with visual impairment using the developmental journal: longitudinal cohort study. Dev Med Child Neurol 61(6):697–709PubMed
Metadata
Title
The development of vision between nature and nurture: clinical implications from visual neuroscience
Authors
Giulia Purpura
Francesca Tinelli
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 5/2020
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-020-04554-1

Other articles of this Issue 5/2020

Child's Nervous System 5/2020 Go to the issue