Skip to main content
Top
Published in: Child's Nervous System 3/2020

01-03-2020 | Magnetic Resonance Imaging | Original Article

Pediatric posterior fossa incidentalomas

Authors: Danil A. Kozyrev, Shlomi Constantini, Deki Tsering, Robert Keating, Sharif Basal, Jonathan Roth

Published in: Child's Nervous System | Issue 3/2020

Login to get access

Abstract

Purpose

Pediatric brain incidentalomas are increasingly being diagnosed. As the posterior fossa (PF) is the location of most brain tumors in children, lesions of this region are of special interest. Currently, the natural history of incidental lesions in the PF is unknown. We present our experience treating such lesions.

Methods

A retrospective study was carried out in two large tertiary pediatric centers. Patients were included if they had an incidental PF lesion suspected of being a tumor, and diagnosed before the age of 20 years. We analyzed treatment strategy, pathology, and outcome of operated and non-operated cases.

Results

Seventy children (31 females) with a mean age of 8.4 ± 6.1 years were included. The three most common indications for imaging were headaches (16, assumed to be unrelated to the lesions), workup of unrelated conditions (14), and unspecified reasons (14). Twenty-seven patients (39%) were operated immediately, and 43 followed, of which 12 were eventually operated due to radiological changes, 28.9 ± 16.2 months after diagnosis. The most commonly found pathology was pilocytic astrocytomas (21 of 39 operated cases). Almost 10% were found to be malignant tumors including medulloblastomas (5) and ATRT (1).

Conclusion

Incidental PF lesions in children include both benign and malignant tumors. While certain lesions may be followed, others may require surgical treatment. Specific treatment decisions are based on initial radiological appearance, change in radiological characteristics over time, location, and evolving symptoms. The surgical risks must be balanced vis-à-vis the risk of missing a high-grade tumor and the very rare risk of malignant transformation.
Literature
2.
go back to reference Ishibashi K, Inoue T, Fukushima H, Watanabe Y, Iwai Y, Sakamoto H, Yamasaki K, Hara J, Shofuda T, Kanematsu D, Yoshioka E, Kanemura Y (2016) Pediatric thalamic glioma with H3F3A K27M mutation, which was detected before and after malignant transformation: a case report. Childs Nerv Syst 32:2433–2438. https://doi.org/10.1007/s00381-016-3161-8 CrossRefPubMed Ishibashi K, Inoue T, Fukushima H, Watanabe Y, Iwai Y, Sakamoto H, Yamasaki K, Hara J, Shofuda T, Kanematsu D, Yoshioka E, Kanemura Y (2016) Pediatric thalamic glioma with H3F3A K27M mutation, which was detected before and after malignant transformation: a case report. Childs Nerv Syst 32:2433–2438. https://​doi.​org/​10.​1007/​s00381-016-3161-8 CrossRefPubMed
4.
12.
go back to reference Rogers AJ, Maher CO, Schunk JE, Quayle K, Jacobs E, Lichenstein R, Powell E, Miskin M, Dayan P, Holmes JF, Kuppermann N, for the Pediatric Emergency Care Applied Research Network (2013) Incidental findings in children with blunt head trauma evaluated with cranial CT scans. Pediatrics 132:e356–e363. https://doi.org/10.1542/peds.2013-0299 CrossRefPubMed Rogers AJ, Maher CO, Schunk JE, Quayle K, Jacobs E, Lichenstein R, Powell E, Miskin M, Dayan P, Holmes JF, Kuppermann N, for the Pediatric Emergency Care Applied Research Network (2013) Incidental findings in children with blunt head trauma evaluated with cranial CT scans. Pediatrics 132:e356–e363. https://​doi.​org/​10.​1542/​peds.​2013-0299 CrossRefPubMed
14.
go back to reference Jansen PR, Dremmen M, van den Berg A, Dekkers IA, Blanken LME, Muetzel RL, Bolhuis K, Mulder RM, Kocevska D, Jansen TA, de Wit MCY, Neuteboom RF, Polderman TJC, Posthuma D, Jaddoe VWV, Verhulst FC, Tiemeier H, van der Lugt A, White TJH (2017) Incidental findings on brain imaging in the general pediatric population. N Engl J Med 377:1593–1595. https://doi.org/10.1056/NEJMc1710724 CrossRefPubMed Jansen PR, Dremmen M, van den Berg A, Dekkers IA, Blanken LME, Muetzel RL, Bolhuis K, Mulder RM, Kocevska D, Jansen TA, de Wit MCY, Neuteboom RF, Polderman TJC, Posthuma D, Jaddoe VWV, Verhulst FC, Tiemeier H, van der Lugt A, White TJH (2017) Incidental findings on brain imaging in the general pediatric population. N Engl J Med 377:1593–1595. https://​doi.​org/​10.​1056/​NEJMc1710724 CrossRefPubMed
16.
go back to reference Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N, Pole JD, Ray PN, Navickiene V, Mangerel J, Remke M, Buczkowicz P, Ramaswamy V, Guerreiro Stucklin A, Li M, Young EJ, Zhang C, Castelo-Branco P, Bakry D, Laughlin S, Shlien A, Chan J, Ligon KL, Rutka JT, Dirks PB, Taylor MD, Greenberg M, Malkin D, Huang A, Bouffet E, Hawkins CE, Tabori U (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022. https://doi.org/10.1200/JCO.2014.58.3922 CrossRefPubMedPubMedCentral Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N, Pole JD, Ray PN, Navickiene V, Mangerel J, Remke M, Buczkowicz P, Ramaswamy V, Guerreiro Stucklin A, Li M, Young EJ, Zhang C, Castelo-Branco P, Bakry D, Laughlin S, Shlien A, Chan J, Ligon KL, Rutka JT, Dirks PB, Taylor MD, Greenberg M, Malkin D, Huang A, Bouffet E, Hawkins CE, Tabori U (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022. https://​doi.​org/​10.​1200/​JCO.​2014.​58.​3922 CrossRefPubMedPubMedCentral
20.
go back to reference Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres À, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434. https://doi.org/10.1002/nbm.1016 CrossRefPubMed Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres À, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434. https://​doi.​org/​10.​1002/​nbm.​1016 CrossRefPubMed
Metadata
Title
Pediatric posterior fossa incidentalomas
Authors
Danil A. Kozyrev
Shlomi Constantini
Deki Tsering
Robert Keating
Sharif Basal
Jonathan Roth
Publication date
01-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 3/2020
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-019-04364-0

Other articles of this Issue 3/2020

Child's Nervous System 3/2020 Go to the issue