Skip to main content
Top
Published in: Child's Nervous System 11/2018

Open Access 01-11-2018 | Original Paper

Erythropoietin-mediated activation of aquaporin-4 channel for the treatment of experimental hydrocephalus

Authors: M. Rizwan Siddiqui, Furqan Attar, Vineet Mohanty, Kwang Sik Kim, C. Shekhar Mayanil, Tadanori Tomita

Published in: Child's Nervous System | Issue 11/2018

Login to get access

Abstract

Objective

In this study, we investigate a neuroprotective agent, erythropoietin (EPO), in animal hydrocephalus model and its potential reversal effects on hydrocephalus by altering the expression of aquaporin-4 (AQP4).

Methods

Obstructive hydrocephalus was induced in 2-week-old rat pups by injecting kaolin (50 μl, 10 mg/ml in saline) into the cisterna magna, while the control pups received only saline. Kaolin-injected pups were divided into two groups on the fifth day after kaolin injection; one group received intra-peritoneal (i.p.) EPO (1 μg/pup) for 5 consecutive days, while other group received i.p. saline for 5 days. The effects of EPO on hydrocephalus were investigated by studying cerebral ventricle size and structural ependymal changes. We examined also the EPO effects on AQP4 expression and microRNA expression.

Results

EPO treatment significantly reduced dilation of the cerebral ventricle and denudation of ependymal line in hydrocephalic pups comparing with the control group. Increased expression of AQP4 in periventricular ependymal lining and cultured astrocytes and increased vascular formation were noted after EPO treatment. Additionally, we identified miR-668 as an endogenous regulator of AQP4 in response to EPO. Anti-miR-668 dampened EPO-induced activation of AQP4 expression.

Conclusions

Together, our results show that EPO-mediated upregulation of AQP4 significantly reduces dilation of the cerebral ventricles in obstructive hydrocephalus pups and may lead to potential therapeutic options for hydrocephalus.
Literature
1.
go back to reference Tully HM, Dobyns WB (2014) Infantile hydrocephalus. A review of epidemiology, classification and causes. Eur J Med Genet 57:359–368CrossRef Tully HM, Dobyns WB (2014) Infantile hydrocephalus. A review of epidemiology, classification and causes. Eur J Med Genet 57:359–368CrossRef
2.
go back to reference Kahle KT, Kulkarni AV, Limbrick DD, Warf BC (2016) Hydrocephalus in children. Lancet 387:788–799CrossRef Kahle KT, Kulkarni AV, Limbrick DD, Warf BC (2016) Hydrocephalus in children. Lancet 387:788–799CrossRef
3.
go back to reference Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3 Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3
4.
go back to reference Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936CrossRef Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936CrossRef
5.
go back to reference Suzuki K, Yamada K, Nakada K, Suzuki Y, Watanabe M, Kwee IL, Nakada T (2017) MRI characteristics of the glia limitans externa: a 7T study. Magn Reson Imaging 44:140–145CrossRef Suzuki K, Yamada K, Nakada K, Suzuki Y, Watanabe M, Kwee IL, Nakada T (2017) MRI characteristics of the glia limitans externa: a 7T study. Magn Reson Imaging 44:140–145CrossRef
6.
go back to reference Desai B, Hsu Y, Schneller B, Hobbs J, Mehta AI, Linnings A: Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus 41: (3) EB, 2016, 41, E8CrossRef Desai B, Hsu Y, Schneller B, Hobbs J, Mehta AI, Linnings A: Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus 41: (3) EB, 2016, 41, E8CrossRef
7.
go back to reference Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277CrossRef Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277CrossRef
8.
go back to reference Nakada T (2014) Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J 55:328–336CrossRef Nakada T (2014) Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J 55:328–336CrossRef
9.
go back to reference Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV (2011) Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery 68:462–473CrossRef Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV (2011) Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery 68:462–473CrossRef
10.
go back to reference Bloch O, Manley GT (2007) The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 22(5):E3CrossRef Bloch O, Manley GT (2007) The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 22(5):E3CrossRef
11.
go back to reference Filippidis AS, Kalani MY, Rekate HL (2011) Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 27:27–33CrossRef Filippidis AS, Kalani MY, Rekate HL (2011) Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 27:27–33CrossRef
12.
go back to reference Tourdias T, Dragonu I, Fushimi Y, Deloire MS, Boiziau C, Brochet B et al (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47:659–666CrossRef Tourdias T, Dragonu I, Fushimi Y, Deloire MS, Boiziau C, Brochet B et al (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47:659–666CrossRef
13.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) a paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med 4:147ra111CrossRef Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) a paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med 4:147ra111CrossRef
14.
go back to reference Ott C, Martens H, Hassouna I, Oliveira B, Erck C, Zafeiriou MP, Peteri UK, Hesse D, Gerhart S, Altas B, Kolbow T, Stadler H, Kawabe H, Zimmermann WH, Nave KA, Schulz-Schaeffer W, Jahn O, Ehrenreich H (2015) Widespread expression of erythropoietin receptor in brain and its induction by injury. Mol Med 21:803–815PubMedPubMedCentral Ott C, Martens H, Hassouna I, Oliveira B, Erck C, Zafeiriou MP, Peteri UK, Hesse D, Gerhart S, Altas B, Kolbow T, Stadler H, Kawabe H, Zimmermann WH, Nave KA, Schulz-Schaeffer W, Jahn O, Ehrenreich H (2015) Widespread expression of erythropoietin receptor in brain and its induction by injury. Mol Med 21:803–815PubMedPubMedCentral
15.
go back to reference Brissaud O, Villega F, Konsman JP, Sanchez S, Raffard G, Franconi J-M, Chateil J-F, Bouzier-Rose A-K (2010) Short-term effect of erythropoietin on brain lesions and aquaporin-4 expression in a hypoxic-ischemic neonatal rat model assessed by magnetic resonance diffusion weighted imaging and immunohistochemistry. Pediatr Res 68:123–127CrossRef Brissaud O, Villega F, Konsman JP, Sanchez S, Raffard G, Franconi J-M, Chateil J-F, Bouzier-Rose A-K (2010) Short-term effect of erythropoietin on brain lesions and aquaporin-4 expression in a hypoxic-ischemic neonatal rat model assessed by magnetic resonance diffusion weighted imaging and immunohistochemistry. Pediatr Res 68:123–127CrossRef
16.
go back to reference Chu H, Ding H, Tang Y, Dong Q (2014) Erythropoietin protects against hemorrhagic blood-brain barrier disruption through the effects of aquaporin-4. Lab Investig 94:1042–1053CrossRef Chu H, Ding H, Tang Y, Dong Q (2014) Erythropoietin protects against hemorrhagic blood-brain barrier disruption through the effects of aquaporin-4. Lab Investig 94:1042–1053CrossRef
17.
go back to reference Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054CrossRef Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054CrossRef
18.
go back to reference Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K (2010) MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 285:29223–29230CrossRef Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K (2010) MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 285:29223–29230CrossRef
19.
go back to reference Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K (2012) MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem 287:12006–12015CrossRef Sepramaniam S, Ying LK, Armugam A, Wintour EM, Jeyaseelan K (2012) MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem 287:12006–12015CrossRef
20.
go back to reference Siddiqui MR, Mayanil CS, Kim KS, Tomita T (2015) Angiopoietin-1 regulates brain endothelial permeability through PTPN-2 mediated tyrosine dephosphorylation of occludin. PLoS One 10:e0130857CrossRef Siddiqui MR, Mayanil CS, Kim KS, Tomita T (2015) Angiopoietin-1 regulates brain endothelial permeability through PTPN-2 mediated tyrosine dephosphorylation of occludin. PLoS One 10:e0130857CrossRef
21.
go back to reference Wan Y, Lu X, He J, Zhao W (2015) Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther 6(100) Wan Y, Lu X, He J, Zhao W (2015) Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther 6(100)
22.
go back to reference Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012) An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 7(2):e32662CrossRef Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012) An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 7(2):e32662CrossRef
24.
go back to reference Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, McLone GD, Tomita T, Mayanil CS (2016) Folate receptor alpha up-regulates Oct4, Sox2 and Klf4 and downregulates miR-138 and miR-let-7 in cranial neural crest cells. Stem Cells 34(11):2721–2732CrossRef Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, McLone GD, Tomita T, Mayanil CS (2016) Folate receptor alpha up-regulates Oct4, Sox2 and Klf4 and downregulates miR-138 and miR-let-7 in cranial neural crest cells. Stem Cells 34(11):2721–2732CrossRef
25.
go back to reference Qin S, Liu M, Niu W, Zhang CL (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci U S A 108:21117–21121CrossRef Qin S, Liu M, Niu W, Zhang CL (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci U S A 108:21117–21121CrossRef
26.
go back to reference Mammis A, McIntosh TK, Maniker AH (2009) Erythropoietin as a neuroprotective agent in traumatic brain injury. Review Surg Neurol 71:527–531CrossRef Mammis A, McIntosh TK, Maniker AH (2009) Erythropoietin as a neuroprotective agent in traumatic brain injury. Review Surg Neurol 71:527–531CrossRef
27.
go back to reference Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6:484–494CrossRef Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6:484–494CrossRef
28.
go back to reference Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054CrossRef Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054CrossRef
Metadata
Title
Erythropoietin-mediated activation of aquaporin-4 channel for the treatment of experimental hydrocephalus
Authors
M. Rizwan Siddiqui
Furqan Attar
Vineet Mohanty
Kwang Sik Kim
C. Shekhar Mayanil
Tadanori Tomita
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 11/2018
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-018-3865-z

Other articles of this Issue 11/2018

Child's Nervous System 11/2018 Go to the issue