Skip to main content
Top
Published in: Child's Nervous System 8/2016

01-08-2016 | Review Paper

Noninvasive methods of detecting increased intracranial pressure

Authors: Wen Xu, Patrick Gerety, Tomas Aleman, Jordan Swanson, Jesse Taylor

Published in: Child's Nervous System | Issue 8/2016

Login to get access

Abstract

The detection of elevated intracranial pressure (ICP) is of paramount importance in the diagnosis and management of a number of neurologic pathologies. The current gold standard is the use of intraventricular or intraparenchymal catheters; however, this is invasive, expensive, and requires anesthesia. On the other hand, diagnosing intracranial hypertension based on clinical symptoms such as headaches, vomiting, and visual changes lacks sensitivity. As such, there exists a need for a noninvasive yet accurate and reliable method for detecting elevated ICP. In this review, we aim to cover both structural modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ocular ultrasound, fundoscopy, and optical coherence tomography (OCT) as well as functional modalities such as transcranial Doppler ultrasound (TCD), visual evoked potentials (VEPs), and near-infrared spectroscopy (NIRS).
Appendix
Available only for authorised users
Literature
2.
go back to reference Hayward R, Britto J, Dunaway D, Jeelani O (2016) Connecting raised intracranial pressure and cognitive delay in craniosynostosis: many assumptions, little evidence. J Neurosurg Pediatr 13:1–9. doi:10.3171/2015.6.PEDS15144 CrossRef Hayward R, Britto J, Dunaway D, Jeelani O (2016) Connecting raised intracranial pressure and cognitive delay in craniosynostosis: many assumptions, little evidence. J Neurosurg Pediatr 13:1–9. doi:10.​3171/​2015.​6.​PEDS15144 CrossRef
4.
5.
go back to reference Koskinen L-OD, Grayson D, Olivecrona M (2013) The complications and the position of the Codman MicroSensor™ ICP device: an analysis of 549 patients and 650 sensors. Acta Neurochir 155:2141–2148 . doi:10.1007/s00701-013-1856-0discussion 2148PubMedCrossRef Koskinen L-OD, Grayson D, Olivecrona M (2013) The complications and the position of the Codman MicroSensor™ ICP device: an analysis of 549 patients and 650 sensors. Acta Neurochir 155:2141–2148 . doi:10.​1007/​s00701-013-1856-0discussion 2148PubMedCrossRef
12.
go back to reference Rangwala LM, Liu GT (2007) Pediatric idiopathic intracranial hypertension. Surv Ophthalmol 52:597–617PubMedCrossRef Rangwala LM, Liu GT (2007) Pediatric idiopathic intracranial hypertension. Surv Ophthalmol 52:597–617PubMedCrossRef
13.
go back to reference Tuite G, Chong WK, Evanson J, et al. (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38:272–278PubMedCrossRef Tuite G, Chong WK, Evanson J, et al. (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38:272–278PubMedCrossRef
15.
go back to reference Mizutani T, Manaka S, Tsutsumi H (1990) Estimation of intracranial pressure using computed tomography scan findings in patients with severe head injury. Surg Neurol 33:178–184PubMedCrossRef Mizutani T, Manaka S, Tsutsumi H (1990) Estimation of intracranial pressure using computed tomography scan findings in patients with severe head injury. Surg Neurol 33:178–184PubMedCrossRef
16.
go back to reference Chen W, Belle A, Cockrell C, et al. (2013) Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp. doi:10.3791/3871 Chen W, Belle A, Cockrell C, et al. (2013) Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp. doi:10.​3791/​3871
17.
go back to reference Miller MT, Pasquale M, Kurek S, et al. (2004) Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma 56:967–972 discussion 972–973PubMedCrossRef Miller MT, Pasquale M, Kurek S, et al. (2004) Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma 56:967–972 discussion 972–973PubMedCrossRef
18.
19.
go back to reference Bailey BM, Liesemer K, Statler KD, et al. (2012) Monitoring and prediction of intracranial hypertension in pediatric traumatic brain injury: clinical factors and initial head computed tomography. J Trauma Acute Care Surg 72:263–270. doi:10.1097/TA.0b013e31822a9512 PubMed Bailey BM, Liesemer K, Statler KD, et al. (2012) Monitoring and prediction of intracranial hypertension in pediatric traumatic brain injury: clinical factors and initial head computed tomography. J Trauma Acute Care Surg 72:263–270. doi:10.​1097/​TA.​0b013e31822a9512​ PubMed
21.
go back to reference Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87:777–781PubMedPubMedCentralCrossRef Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87:777–781PubMedPubMedCentralCrossRef
22.
go back to reference Sekhon MS, Griesdale DE, Robba C, et al. (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40:1267–1274. doi:10.1007/s00134-014-3392-7 PubMedCrossRef Sekhon MS, Griesdale DE, Robba C, et al. (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40:1267–1274. doi:10.​1007/​s00134-014-3392-7 PubMedCrossRef
24.
go back to reference Raksin PB, Alperin N, Sivaramakrishnan A, et al. (2003) Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus 14:e4PubMedCrossRef Raksin PB, Alperin N, Sivaramakrishnan A, et al. (2003) Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus 14:e4PubMedCrossRef
26.
go back to reference Muehlmann M, Koerte IK, Laubender RP, et al. (2013) Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus. Investig Radiol 48:543–547. doi:10.1097/RLI.0b013e31828ad504 CrossRef Muehlmann M, Koerte IK, Laubender RP, et al. (2013) Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus. Investig Radiol 48:543–547. doi:10.​1097/​RLI.​0b013e31828ad504​ CrossRef
28.
go back to reference Mase M, Yamada K, Banno T, et al. (1998) Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir Suppl 71:350–353PubMed Mase M, Yamada K, Banno T, et al. (1998) Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir Suppl 71:350–353PubMed
29.
go back to reference Poca MA, Sahuquillo J, Busto M, et al. (2002) Agreement between CSF flow dynamics in MRI and ICP monitoring in the diagnosis of normal pressure hydrocephalus. Sensitivity and specificity of CSF dynamics to predict outcome. Acta Neurochir Suppl 81:7–10PubMed Poca MA, Sahuquillo J, Busto M, et al. (2002) Agreement between CSF flow dynamics in MRI and ICP monitoring in the diagnosis of normal pressure hydrocephalus. Sensitivity and specificity of CSF dynamics to predict outcome. Acta Neurochir Suppl 81:7–10PubMed
33.
go back to reference Shirodkar CG, Rao SM, Mutkule DP, et al. (2014) Optic nerve sheath diameter as a marker for evaluation and prognostication of intracranial pressure in Indian patients: an observational study. Indian J Crit Care Med 18:728–734. doi:10.4103/0972-5229.144015 PubMedPubMedCentral Shirodkar CG, Rao SM, Mutkule DP, et al. (2014) Optic nerve sheath diameter as a marker for evaluation and prognostication of intracranial pressure in Indian patients: an observational study. Indian J Crit Care Med 18:728–734. doi:10.​4103/​0972-5229.​144015 PubMedPubMedCentral
37.
go back to reference Maissan IM, Dirven PJAC, Haitsma IK, et al. (2015) Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg 1–5. doi: 10.3171/2014.10.JNS141197 Maissan IM, Dirven PJAC, Haitsma IK, et al. (2015) Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg 1–5. doi: 10.​3171/​2014.​10.​JNS141197
38.
go back to reference Nabeta HW, Bahr NC, Rhein J, et al. (2014) Accuracy of noninvasive intraocular pressure or optic nerve sheath diameter measurements for predicting elevated intracranial pressure in Cryptococcal meningitis. Open forum Infect Dis 1:1–8. doi:10.1093/o CrossRef Nabeta HW, Bahr NC, Rhein J, et al. (2014) Accuracy of noninvasive intraocular pressure or optic nerve sheath diameter measurements for predicting elevated intracranial pressure in Cryptococcal meningitis. Open forum Infect Dis 1:1–8. doi:10.​1093/​o CrossRef
40.
go back to reference Shofty B, Ben-Sira L, Constantini S, et al. (2012) Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol 33:366–369. doi:10.3174/ajnr.A2779 PubMedCrossRef Shofty B, Ben-Sira L, Constantini S, et al. (2012) Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol 33:366–369. doi:10.​3174/​ajnr.​A2779 PubMedCrossRef
41.
go back to reference Ballantyne J, Hollman AS, Hamilton R, et al. (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54:740–742PubMedCrossRef Ballantyne J, Hollman AS, Hamilton R, et al. (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54:740–742PubMedCrossRef
45.
go back to reference Steffen H, Eifert B, Aschoff A, et al. (1996) The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmol (Rochester, Minn) 103:1229–1232CrossRef Steffen H, Eifert B, Aschoff A, et al. (1996) The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmol (Rochester, Minn) 103:1229–1232CrossRef
47.
go back to reference Mathew NT, Ravishankar K, Sanin LC (1996) Coexistence of migraine and idiopathic intracranial hypertension without papilledema. Neurology 46:1226–1230PubMedCrossRef Mathew NT, Ravishankar K, Sanin LC (1996) Coexistence of migraine and idiopathic intracranial hypertension without papilledema. Neurology 46:1226–1230PubMedCrossRef
51.
go back to reference Sihota R, Sony P, Gupta V, et al. (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010. doi:10.1167/iovs.05-1102 PubMedCrossRef Sihota R, Sony P, Gupta V, et al. (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010. doi:10.​1167/​iovs.​05-1102 PubMedCrossRef
52.
go back to reference Hee MR, Baumal CR, Puliafito CA, et al. (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270PubMedCrossRef Hee MR, Baumal CR, Puliafito CA, et al. (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270PubMedCrossRef
53.
go back to reference Driessen C, Eveleens J, Bleyen I, et al. (2014) Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv Syst 30:1067–1073. doi:10.1007/s00381-014-2376-9 PubMed Driessen C, Eveleens J, Bleyen I, et al. (2014) Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv Syst 30:1067–1073. doi:10.​1007/​s00381-014-2376-9 PubMed
54.
55.
go back to reference Gabriele ML, Ishikawa H, Wollstein G, et al. (2007) Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 48:3154–3160. doi:10.1167/iovs.06-1416 PubMedPubMedCentralCrossRef Gabriele ML, Ishikawa H, Wollstein G, et al. (2007) Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 48:3154–3160. doi:10.​1167/​iovs.​06-1416 PubMedPubMedCentralCrossRef
56.
go back to reference Varma R, Bazzaz S, Bai M (2003) Optical tomography-measured retinal nerve fiber layer thickness in normal latinos. Invest Ophthalmol Vis Sci 44:3369–3373PubMedCrossRef Varma R, Bazzaz S, Bai M (2003) Optical tomography-measured retinal nerve fiber layer thickness in normal latinos. Invest Ophthalmol Vis Sci 44:3369–3373PubMedCrossRef
64.
go back to reference Scott CJ, Kardon RH, Lee AG, et al. (2010) Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 128:705–711. doi:10.1001/archophthalmol.2010.94 PubMedCrossRef Scott CJ, Kardon RH, Lee AG, et al. (2010) Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 128:705–711. doi:10.​1001/​archophthalmol.​2010.​94 PubMedCrossRef
66.
go back to reference Skau M, Yri H, Sander B, et al. (2012) Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol:567–574. doi:10.1007/s00417-012-2039-z Skau M, Yri H, Sander B, et al. (2012) Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol:567–574. doi:10.​1007/​s00417-012-2039-z
67.
go back to reference Group OS-SC for the NIIHS (2014) Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci 55:8173–8179. doi:10.1167/iovs.14-14961 CrossRef Group OS-SC for the NIIHS (2014) Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci 55:8173–8179. doi:10.​1167/​iovs.​14-14961 CrossRef
69.
go back to reference Klingelhöfer J, Conrad B, Benecke R, et al. (1988) Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol 235:159–162PubMedCrossRef Klingelhöfer J, Conrad B, Benecke R, et al. (1988) Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol 235:159–162PubMedCrossRef
71.
go back to reference Michel E, Zernikow B (1998) Gosling’s Doppler pulsatility index revisited. Ultrasound Med Biol 24:597–599PubMedCrossRef Michel E, Zernikow B (1998) Gosling’s Doppler pulsatility index revisited. Ultrasound Med Biol 24:597–599PubMedCrossRef
72.
go back to reference (2004) AAN Guideline Summary for Clinicians: Assessment of Transcranial Doppler Ultrasonography. (2004) AAN Guideline Summary for Clinicians: Assessment of Transcranial Doppler Ultrasonography.
73.
go back to reference Ragauskas A, Bartusis L, Piper I, et al. (2014) Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res 36:607–614. doi:10.1179/1743132813Y.0000000308 PubMedCrossRef Ragauskas A, Bartusis L, Piper I, et al. (2014) Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res 36:607–614. doi:10.​1179/​1743132813Y.​0000000308 PubMedCrossRef
75.
76.
go back to reference Hunter G, Voll C, Rajput M (2010) Utility of transcranial doppler in idiopathic intracranial hypertension. Can J Neurol Sci 37:235–239PubMedCrossRef Hunter G, Voll C, Rajput M (2010) Utility of transcranial doppler in idiopathic intracranial hypertension. Can J Neurol Sci 37:235–239PubMedCrossRef
78.
go back to reference Wakerley BR, Kusuma Y, Yeo LLL, et al. (2014) Usefulness of transcranial doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 25:111–116. doi:10.1111/jon.12100 PubMedCrossRef Wakerley BR, Kusuma Y, Yeo LLL, et al. (2014) Usefulness of transcranial doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 25:111–116. doi:10.​1111/​jon.​12100 PubMedCrossRef
79.
go back to reference Rainov NG, Weise JB, Burkert W (2000) Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23:34–38PubMedCrossRef Rainov NG, Weise JB, Burkert W (2000) Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23:34–38PubMedCrossRef
80.
81.
go back to reference Behrens A, Lenfeldt N, Ambarki K, et al. (2010) Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 66:1050–1057PubMedCrossRef Behrens A, Lenfeldt N, Ambarki K, et al. (2010) Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 66:1050–1057PubMedCrossRef
82.
go back to reference Hanlo PW, Gooskens RH, Nijhuis IJ, et al. (1995) Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 11:595–603PubMedCrossRef Hanlo PW, Gooskens RH, Nijhuis IJ, et al. (1995) Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 11:595–603PubMedCrossRef
84.
go back to reference Banich M, Compton R (2011) Cognitive neuroscience, 3rd edn. Cengage Learning, Belmont Banich M, Compton R (2011) Cognitive neuroscience, 3rd edn. Cengage Learning, Belmont
86.
go back to reference Sklar FH, Ehle AL, Clark WK (1979) Visual evoked potentials: a noninvasive technique to monitor patients with shunted hydrocephalus. Neurosurgery 4:529–534PubMedCrossRef Sklar FH, Ehle AL, Clark WK (1979) Visual evoked potentials: a noninvasive technique to monitor patients with shunted hydrocephalus. Neurosurgery 4:529–534PubMedCrossRef
87.
go back to reference Fichsel H (1976) Diagnosis of hydrocephalus. Changes in visual evoked potentials in children with progressive hydrocephalus internus. Fortschr Med 94:1141–1142PubMed Fichsel H (1976) Diagnosis of hydrocephalus. Changes in visual evoked potentials in children with progressive hydrocephalus internus. Fortschr Med 94:1141–1142PubMed
88.
go back to reference Sjöström A, Uvebrant P, Roos A (1995) The light-flash-evoked response as a possible indicator of increased intracranial pressure in hydrocephalus. Childs Nerv Syst 11:381–387 discussion 387PubMedCrossRef Sjöström A, Uvebrant P, Roos A (1995) The light-flash-evoked response as a possible indicator of increased intracranial pressure in hydrocephalus. Childs Nerv Syst 11:381–387 discussion 387PubMedCrossRef
89.
go back to reference Vieira MADCS, Cavalcanti MDAS, Costa DL, et al. (2015) Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis. Arq Neuropsiquiatr 73:309–313. doi:10.1590/0004-282X20150002 PubMedCrossRef Vieira MADCS, Cavalcanti MDAS, Costa DL, et al. (2015) Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis. Arq Neuropsiquiatr 73:309–313. doi:10.​1590/​0004-282X20150002 PubMedCrossRef
91.
go back to reference Gumerlock MK, York D, Durkis D (1994) Visual evoked responses as a monitor of intracranial pressure during hyperosmolar blood-brain barrier disruption. Acta Neurochir Suppl (Wien) 60:132–135 Gumerlock MK, York D, Durkis D (1994) Visual evoked responses as a monitor of intracranial pressure during hyperosmolar blood-brain barrier disruption. Acta Neurochir Suppl (Wien) 60:132–135
92.
go back to reference Desch LW (2001) Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol 43:113–117PubMedCrossRef Desch LW (2001) Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol 43:113–117PubMedCrossRef
94.
go back to reference Sutter EE (2010) Noninvasive testing methods: multifocal electrophysiology. In: Darlene A. Dartt (ed) Encycl. Eye. pp 142–160 Sutter EE (2010) Noninvasive testing methods: multifocal electrophysiology. In: Darlene A. Dartt (ed) Encycl. Eye. pp 142–160
95.
go back to reference (2008) Guideline 9B: Guidelines on Visual Evoked Potentials. (2008) Guideline 9B: Guidelines on Visual Evoked Potentials.
96.
98.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, et al. (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17 discussion 17–9PubMedCrossRef Czosnyka M, Smielewski P, Kirkpatrick P, et al. (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17 discussion 17–9PubMedCrossRef
100.
go back to reference Steiner LA, Czosnyka M, Piechnik SK, et al. (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738PubMedCrossRef Steiner LA, Czosnyka M, Piechnik SK, et al. (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738PubMedCrossRef
102.
103.
go back to reference Kampfl A, Pfausler B, Denchev D, et al. (1997) Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. A pilot study. Acta Neurochir Suppl 70:112–114PubMed Kampfl A, Pfausler B, Denchev D, et al. (1997) Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. A pilot study. Acta Neurochir Suppl 70:112–114PubMed
108.
go back to reference Ohle R, McIsaac SM, Woo MY, Perry JJ (2015) Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis. J Ultrasound Med 34:1285–1294. doi: 10.7863/ultra.34.7.1285 Ohle R, McIsaac SM, Woo MY, Perry JJ (2015) Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis. J Ultrasound Med 34:1285–1294. doi: 10.​7863/​ultra.​34.​7.​1285
Metadata
Title
Noninvasive methods of detecting increased intracranial pressure
Authors
Wen Xu
Patrick Gerety
Tomas Aleman
Jordan Swanson
Jesse Taylor
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 8/2016
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-016-3143-x

Other articles of this Issue 8/2016

Child's Nervous System 8/2016 Go to the issue