Skip to main content
Top
Published in: Child's Nervous System 11/2012

01-11-2012 | Original Paper

Neuronal injury and cytogenesis after simple febrile seizures in the hippocampal dentate gyrus of juvenile rat

Authors: Amir Nazem, Amir Hossein Jafarian, Seyed Homayoon Sadraie, Ali Gorji, Hamed Kheradmand, Mahla Radmard, Hossein Haghir

Published in: Child's Nervous System | Issue 11/2012

Login to get access

Abstract

Purpose

Although simple febrile seizures are frequently described as harmless, there is evidence which suggests that hippocampal damage may occur after simple febrile seizures. This study aimed to investigate possible neuronal damages as well as alterations in cytogenesis in the hippocampal dentate gyrus following simple febrile seizures.

Methods

Simple febrile seizure was modeled by hyperthermia-induced seizures in 22-day-old male rats. The brains were removed 2 or 15 days after hyperthermia in all rats with (n = 20) and without (n = 10) occurrence of seizures as well as in control animals (n = 10). The sections were stained with hematoxylin and eosin to estimate the surface numerical density of dark neurons. Ki-67 immunohistochemistry was performed to evaluate changes of cytogenesis following simple febrile seizures.

Results

Hyperthermia induced behavioral seizure activities in 67 % of the rats. The numerical densities of dark neurons as well as the mean Ki-67 index (the fraction of Ki-67-positive cells) were significantly increased in dentate gyrus after induction of seizures by hyperthermia compared to both controls and rats without seizure after hyperthermia. Both the seizure duration and intensity were correlated significantly with numerical densities of dark neurons (but not with Ki-67 index).

Conclusion

The data indicate that simple febrile seizures can cause neuronal damages and enhancement of cytogenesis in the hippocampal dentate gyrus, which were still visible for at least 2 weeks. These findings also suggest the correlation of febrile seizure intensity and duration with neuronal damage.
Literature
1.
go back to reference Ateş N, Akman Ã, Karson A (2005) The effects of the immature rat model of febrile seizures on the occurrence of later generalized tonic-clonic and absence epilepsy. Dev Brain Res 154:137–140CrossRef Ateş N, Akman Ã, Karson A (2005) The effects of the immature rat model of febrile seizures on the occurrence of later generalized tonic-clonic and absence epilepsy. Dev Brain Res 154:137–140CrossRef
2.
go back to reference Auer T, Barsi P, Bone B, Angyalosi A, Aradi M, Szalay C, Horvath RA, Kovacs N, Kotek G, Fogarasi A, Komoly S, Janszky I, Schwarcz A, Janszky J (2008) History of simple febrile seizures is associated with hippocampal abnormalities in adults. Epilepsia 49:1562–1569PubMedCrossRef Auer T, Barsi P, Bone B, Angyalosi A, Aradi M, Szalay C, Horvath RA, Kovacs N, Kotek G, Fogarasi A, Komoly S, Janszky I, Schwarcz A, Janszky J (2008) History of simple febrile seizures is associated with hippocampal abnormalities in adults. Epilepsia 49:1562–1569PubMedCrossRef
3.
go back to reference Bender RA, Baram TZ (2007) Epileptogenesis in the developing brain: what can we learn from animal models? Epilepsia 48:2–6PubMedCrossRef Bender RA, Baram TZ (2007) Epileptogenesis in the developing brain: what can we learn from animal models? Epilepsia 48:2–6PubMedCrossRef
4.
go back to reference Bender RA, Dube C, Gonzalez-Vega R, Mina EW, Baram TZ (2003) Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 13:399–412PubMedCrossRef Bender RA, Dube C, Gonzalez-Vega R, Mina EW, Baram TZ (2003) Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 13:399–412PubMedCrossRef
5.
go back to reference Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94:10432–10437PubMedCrossRef Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94:10432–10437PubMedCrossRef
6.
go back to reference Braendgaard H, Gundersen HJG (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18:39–78PubMedCrossRef Braendgaard H, Gundersen HJG (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18:39–78PubMedCrossRef
7.
go back to reference Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706–718PubMedCrossRef Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706–718PubMedCrossRef
8.
go back to reference Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5:888–894PubMedCrossRef Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5:888–894PubMedCrossRef
9.
go back to reference Dube C, Bender RA, Chen K, Toth Z, Eghbal-Ahmadi M, Soltesz I, Baram TZ (2000) Prolonged febrile seizures: neuroanatomical and functional consequences. Acta Neurol Scand Suppl 102:38–40CrossRef Dube C, Bender RA, Chen K, Toth Z, Eghbal-Ahmadi M, Soltesz I, Baram TZ (2000) Prolonged febrile seizures: neuroanatomical and functional consequences. Acta Neurol Scand Suppl 102:38–40CrossRef
10.
go back to reference Gibbs S, Chattopadhyaya B, Desgent S, Awad PN, Clerk-Lamalice O, Levesque M, Vianna RM, Rébillard RM, Delsemme AA, Hébert D, Tremblay L, Lepage M, Descarries L, Di Cristo G, Carmant L (2011) Long-term consequences of a prolonged febrile seizure in a dual pathology model. Neurobiol Dis 43:312–321PubMedCrossRef Gibbs S, Chattopadhyaya B, Desgent S, Awad PN, Clerk-Lamalice O, Levesque M, Vianna RM, Rébillard RM, Delsemme AA, Hébert D, Tremblay L, Lepage M, Descarries L, Di Cristo G, Carmant L (2011) Long-term consequences of a prolonged febrile seizure in a dual pathology model. Neurobiol Dis 43:312–321PubMedCrossRef
11.
go back to reference Haut SR, Velisskova J, Moshe SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3:608–617PubMedCrossRef Haut SR, Velisskova J, Moshe SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3:608–617PubMedCrossRef
12.
go back to reference Heuser K, Cvancarova M, Gjerstad L, Taubøll E (2011) Is temporal lobe epilepsy with childhood febrile seizures a distinctive entity? A comparative study. Seizure 20:163–166PubMedCrossRef Heuser K, Cvancarova M, Gjerstad L, Taubøll E (2011) Is temporal lobe epilepsy with childhood febrile seizures a distinctive entity? A comparative study. Seizure 20:163–166PubMedCrossRef
13.
go back to reference Jackson MB, Scharfman HE (1996) Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76:601–616PubMed Jackson MB, Scharfman HE (1996) Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76:601–616PubMed
14.
go back to reference Jiang W, Duong TM, de Lanerolle NC (1999) The neuropathology of hyperthermic seizures in the rat. Epilepsia 40:5–19PubMedCrossRef Jiang W, Duong TM, de Lanerolle NC (1999) The neuropathology of hyperthermic seizures in the rat. Epilepsia 40:5–19PubMedCrossRef
15.
go back to reference Jordan WH, Hall DG, Young JK, Hyten MJ (2007) Practical rat neuropathology. J Histotechnol 30:115–120CrossRef Jordan WH, Hall DG, Young JK, Hyten MJ (2007) Practical rat neuropathology. J Histotechnol 30:115–120CrossRef
16.
go back to reference Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. NeuroToxicology 27:628–634PubMedCrossRef Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. NeuroToxicology 27:628–634PubMedCrossRef
17.
go back to reference Kaur C, Ling EA, Wong WC (1989) Development of the various glial cell types in the cerebral cortex of postnatal rats. Acta Anat 136:204–210PubMedCrossRef Kaur C, Ling EA, Wong WC (1989) Development of the various glial cell types in the cerebral cortex of postnatal rats. Acta Anat 136:204–210PubMedCrossRef
18.
go back to reference Kinney HC, Chadwick AE, Crandall LA, Grafe M, Armstrong DL, Kupsky WJ, Trachtenberg FL, Krous HF (2009) Sudden death, febrile seizures, and hippocampal and temporal lobe maldevelopment in toddlers: a new entity. Pediatr Dev Pathol 12:455–463PubMedCrossRef Kinney HC, Chadwick AE, Crandall LA, Grafe M, Armstrong DL, Kupsky WJ, Trachtenberg FL, Krous HF (2009) Sudden death, febrile seizures, and hippocampal and temporal lobe maldevelopment in toddlers: a new entity. Pediatr Dev Pathol 12:455–463PubMedCrossRef
19.
go back to reference Lado FA, Laureta EC, Moshé SL (2002) Seizure-induced hippocampal damage in the mature and immature brain. Epileptic Disord 4(2):83–97PubMed Lado FA, Laureta EC, Moshé SL (2002) Seizure-induced hippocampal damage in the mature and immature brain. Epileptic Disord 4(2):83–97PubMed
20.
go back to reference Lemmens EMP, Schijns OEMG, Beuls EAM, Hoogland G (2008) Cytogenesis in the dentate gyrus after neonatal hyperthermia-induced seizures: what becomes of surviving cells? Epilepsia 49:853–860PubMedCrossRef Lemmens EMP, Schijns OEMG, Beuls EAM, Hoogland G (2008) Cytogenesis in the dentate gyrus after neonatal hyperthermia-induced seizures: what becomes of surviving cells? Epilepsia 49:853–860PubMedCrossRef
21.
go back to reference Ling EA, Paterson JA, Privat A, Mori S, Leblond CP (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149:43–72PubMedCrossRef Ling EA, Paterson JA, Privat A, Mori S, Leblond CP (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149:43–72PubMedCrossRef
22.
go back to reference McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, Holmes GL (2001) Reduced neurogenesis after neonatal seizures. J Neurosci 21:2094–2103PubMed McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, Holmes GL (2001) Reduced neurogenesis after neonatal seizures. J Neurosci 21:2094–2103PubMed
23.
go back to reference McClelland S, Dubé CM, Yang J, Baram TZ (2011) Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities. Neurosci Lett 497:155–162PubMedCrossRef McClelland S, Dubé CM, Yang J, Baram TZ (2011) Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities. Neurosci Lett 497:155–162PubMedCrossRef
24.
go back to reference Mobasher M, Aramesh K, Aldavoud SJ, Ashrafganjooei N, Divsalar K, Phillips CJC, Larijani B (2008) Proposing a national ethical framework for animal research in Iran. Iranian J Publ Health 37(1):39–46 Mobasher M, Aramesh K, Aldavoud SJ, Ashrafganjooei N, Divsalar K, Phillips CJC, Larijani B (2008) Proposing a national ethical framework for animal research in Iran. Iranian J Publ Health 37(1):39–46
25.
go back to reference Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB (2003) Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J Histochem Cytochem 51:1681–1688PubMedCrossRef Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB (2003) Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J Histochem Cytochem 51:1681–1688PubMedCrossRef
26.
go back to reference Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269PubMedCrossRef Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269PubMedCrossRef
27.
go back to reference Pae EK, Chien P, Harper RM (2005) Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 375:123–128PubMedCrossRef Pae EK, Chien P, Harper RM (2005) Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 375:123–128PubMedCrossRef
28.
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, San Diego Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, San Diego
29.
go back to reference Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C (1998) The EnVision™ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMateTM, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511PubMedCrossRef Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C (1998) The EnVision™ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMateTM, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511PubMedCrossRef
30.
go back to reference Scantlebury MH, Heida JG (2010) Febrile seizures and temporal lobe epileptogenesis. Epilepsy Res 89:27–33PubMedCrossRef Scantlebury MH, Heida JG (2010) Febrile seizures and temporal lobe epileptogenesis. Epilepsy Res 89:27–33PubMedCrossRef
31.
go back to reference Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823PubMedCrossRef Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823PubMedCrossRef
32.
go back to reference Schuchmann S, Vanhatalo S, Kaila K (2009) Neurobiological and physiological mechanisms of fever-related epileptiform syndromes. Brain Dev 31:378–382PubMedCrossRef Schuchmann S, Vanhatalo S, Kaila K (2009) Neurobiological and physiological mechanisms of fever-related epileptiform syndromes. Brain Dev 31:378–382PubMedCrossRef
33.
go back to reference Scott RC, King MD, Gadian DG, Neville BGR, Connelly A (2003) Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain 126:2551–2557PubMedCrossRef Scott RC, King MD, Gadian DG, Neville BGR, Connelly A (2003) Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain 126:2551–2557PubMedCrossRef
34.
go back to reference Siebzehnrubl FA, Blümcke I (2008) Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 49:55–65PubMedCrossRef Siebzehnrubl FA, Blümcke I (2008) Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 49:55–65PubMedCrossRef
35.
go back to reference Subcommittee on Febrile Seizures, American Academy of Pediatrics (2011) Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 127:389–394CrossRef Subcommittee on Febrile Seizures, American Academy of Pediatrics (2011) Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 127:389–394CrossRef
36.
go back to reference Sugimoto T, Bennett GJ, Kajander KC (1990) Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 42(2):205–213PubMedCrossRef Sugimoto T, Bennett GJ, Kajander KC (1990) Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 42(2):205–213PubMedCrossRef
37.
go back to reference Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18:4285–4294PubMed Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18:4285–4294PubMed
38.
go back to reference Uylings HBM, Zilles K, Rajkowska G (1999) Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 9:439–445PubMedCrossRef Uylings HBM, Zilles K, Rajkowska G (1999) Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 9:439–445PubMedCrossRef
Metadata
Title
Neuronal injury and cytogenesis after simple febrile seizures in the hippocampal dentate gyrus of juvenile rat
Authors
Amir Nazem
Amir Hossein Jafarian
Seyed Homayoon Sadraie
Ali Gorji
Hamed Kheradmand
Mahla Radmard
Hossein Haghir
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Child's Nervous System / Issue 11/2012
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-012-1817-6

Other articles of this Issue 11/2012

Child's Nervous System 11/2012 Go to the issue