Skip to main content
Top
Published in: Child's Nervous System 12/2007

01-12-2007 | Original Paper

Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review

Authors: Charles Raybaud, Concezio Di Rocco

Published in: Child's Nervous System | Issue 12/2007

Login to get access

Abstract

Background

Syndromic craniosynostoses (Saethre–Chotzen, Pfeiffer 1, 2, 3, Apert, Crouzon, mainly) are particular in this that a single gene defect (mostly fibroblast growth factor receptor [FGFR] 2) generates different clinical phenotypes that characterize these syndromes. Significant brain abnormalities have been reported in all syndromes. However, whether these abnormalities are secondary to the bone disease or primary (e.g. callosal agenesis) is still controversial. Recent evidence suggests that the white matter defect might be a primary disorder.

Review of literature

From the review of the literature and the analysis of our cases, it appears that three categories of brain abnormalities can be found. (1) The global distortion of the brain is likely mechanical and in keeping with the deformity of the skull. (2) The chronic tonsillar herniation (Chiari I deformity) is likely mechanical also and a consequence of the small size of the posterior fossa, especially after an early closure (before 24 m) of the lambdoid suture. (3) On the contrary, the constellation of abnormalities that selectively involve the white matter (non-progressive, non-destructive ventriculomegaly, callosal agenesis or thinning, agenesis of septum pellucidum, paucity of the antero-mesial temporal white matter, pyramidal hypoplasia) is much more likely to constitute a primary disorder.

Conclusions

Recent neurobiological evidence supports this point of view. L1 cell adhesion molecule (L1CAM) gene plays a major role in the development of the white matter and its mutation in humans (callosal agenesis, retardation, adducted thumbs, spasticity, and hydrocephalus syndrome, Bickers–Adams syndrome) or in mice causes similar defects of the corpus callosum, septum pellucidum, centrum semi-ovale, and cortico-spinal tracts. To operate, L1CAM need interactions with FGFRs, whose defects are causal to the syndromic craniosynostoses. It seems logical to assumes that the FGFR defects generate both the skull abnormalities and, by lack of interaction with L1CAM, the primary defect of the white matter. The mental deficiency that is common in these patients therefore is likely to be part of the disease (through the L1CAM–FGFR interaction) rather than a consequence of the skull size or of the associated hydrocephalus.
Literature
1.
go back to reference ten Donkelaar HJ, Lammens M, Hori A (2006) Clinical neuroembryology. Development and developmental disorders of the human central nervous system. Springer, Berlin ten Donkelaar HJ, Lammens M, Hori A (2006) Clinical neuroembryology. Development and developmental disorders of the human central nervous system. Springer, Berlin
2.
go back to reference Jones KL (2006) Smith’s recognizable pattern of human malformation, 6th edn. Elsevier Saunders, Philadelphia, PA Jones KL (2006) Smith’s recognizable pattern of human malformation, 6th edn. Elsevier Saunders, Philadelphia, PA
3.
go back to reference OMIM (2007) Online Mendelian inheritance in man. Johns Hopkins University, Baltimore, MD OMIM (2007) Online Mendelian inheritance in man. Johns Hopkins University, Baltimore, MD
4.
go back to reference Carinci F, Pezzetti F, Becchetti E, Carls F, Avantaggiato A, Becchetti A, Carinci P, Baroni T, Bodo M (2005) Apert and Crouzon syndromes: clinical findings, genes and extracellular matrix. J Craniofac Surg 16:361–368PubMedCrossRef Carinci F, Pezzetti F, Becchetti E, Carls F, Avantaggiato A, Becchetti A, Carinci P, Baroni T, Bodo M (2005) Apert and Crouzon syndromes: clinical findings, genes and extracellular matrix. J Craniofac Surg 16:361–368PubMedCrossRef
5.
go back to reference Da Costa AC, Walters I, Savarirayan R, Anderson VA, Wrennall JA, Meara JG (2006) Intellectual outcomes in children and adolescent with syndromic and nonsyndromic craniosynostosis. Plast Reconstr Surg 118:182–183CrossRef Da Costa AC, Walters I, Savarirayan R, Anderson VA, Wrennall JA, Meara JG (2006) Intellectual outcomes in children and adolescent with syndromic and nonsyndromic craniosynostosis. Plast Reconstr Surg 118:182–183CrossRef
6.
go back to reference Elia M, Musumeci SA, Ferri R, Greco D, Romano C, Del Gracco S, Stefanini MC (1996) Saethre-Chotzen syndrome: a clinical, EEG and neuroradiological study. Child’s Nerv Syst 12:699–704CrossRef Elia M, Musumeci SA, Ferri R, Greco D, Romano C, Del Gracco S, Stefanini MC (1996) Saethre-Chotzen syndrome: a clinical, EEG and neuroradiological study. Child’s Nerv Syst 12:699–704CrossRef
7.
go back to reference Gabrielli O, Moroni E, Barbato M, Pierleoni C, Felici L (1989) Acrocefalosindatillia tipo III (S. Saethre–Chotzen). Descrizione di due casi. Pathologia 81:295–300 (quoted by [6]) Gabrielli O, Moroni E, Barbato M, Pierleoni C, Felici L (1989) Acrocefalosindatillia tipo III (S. Saethre–Chotzen). Descrizione di due casi. Pathologia 81:295–300 (quoted by [6])
8.
go back to reference Philip N, Chabrol B, Lossi AM, Cardoso C, Guerrini R, Dobyns WB, Raybaud C, Villard L (2003) Mutations in the oligophrenin-1 gene (OPHN1) cause X-linked congenital cerebellar hypoplasia. J Med Genet 40:441–446PubMedCrossRef Philip N, Chabrol B, Lossi AM, Cardoso C, Guerrini R, Dobyns WB, Raybaud C, Villard L (2003) Mutations in the oligophrenin-1 gene (OPHN1) cause X-linked congenital cerebellar hypoplasia. J Med Genet 40:441–446PubMedCrossRef
9.
go back to reference Cohen MM Jr (1993) Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. Am J Med Genet 45:300–307PubMedCrossRef Cohen MM Jr (1993) Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. Am J Med Genet 45:300–307PubMedCrossRef
10.
go back to reference Robin NH, Scott JA, Arnold JE, Goldstein JA, Shilling BB, Marion RW, Cohen MM Jr (1998) Favorable prognosis for children with Pfeiffer syndrome types 2 and 3: implication for classification. Am J Med Genet 75:240–244PubMedCrossRef Robin NH, Scott JA, Arnold JE, Goldstein JA, Shilling BB, Marion RW, Cohen MM Jr (1998) Favorable prognosis for children with Pfeiffer syndrome types 2 and 3: implication for classification. Am J Med Genet 75:240–244PubMedCrossRef
11.
go back to reference Plomp AS, Hamel BCJ, Cobben JM, Verloes A, Offermans JPM, Lajeunie E, Fryns JP, de Die-Smulders CEM (1998) Pfeiffer syndrome type 2: further delineation and review of the literature. Am J Med Genet 75:245–51PubMedCrossRef Plomp AS, Hamel BCJ, Cobben JM, Verloes A, Offermans JPM, Lajeunie E, Fryns JP, de Die-Smulders CEM (1998) Pfeiffer syndrome type 2: further delineation and review of the literature. Am J Med Genet 75:245–51PubMedCrossRef
12.
go back to reference Barkovich AJ (2005) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia Barkovich AJ (2005) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia
13.
go back to reference Colosimo C, Tartaro A, Cama A, Tortori-Donati P (2005) The craniosynostoses. In: Tortori-Donati P, Rossi A, Biancheri R (eds) Pediatric neuroradiology. Springer, Berlin, pp 1289–1315 Colosimo C, Tartaro A, Cama A, Tortori-Donati P (2005) The craniosynostoses. In: Tortori-Donati P, Rossi A, Biancheri R (eds) Pediatric neuroradiology. Springer, Berlin, pp 1289–1315
14.
go back to reference Itoh S, Nojima M, Yoshida K (2006) Usefulness of magnetic resonance imaging for accurate diagnosis of Pfeiffer syndrome type II in utero. Fetal Diagn Ther 21:168–171PubMedCrossRef Itoh S, Nojima M, Yoshida K (2006) Usefulness of magnetic resonance imaging for accurate diagnosis of Pfeiffer syndrome type II in utero. Fetal Diagn Ther 21:168–171PubMedCrossRef
15.
go back to reference Fjortoft MI, Sevely A, Boetto S, Kessler S, Sarramon F, Rolland M (2007) Prenatal diagnosis of craniosynostosis: value of MR imaging. Neuroradiology 49:515–521PubMedCrossRef Fjortoft MI, Sevely A, Boetto S, Kessler S, Sarramon F, Rolland M (2007) Prenatal diagnosis of craniosynostosis: value of MR imaging. Neuroradiology 49:515–521PubMedCrossRef
16.
go back to reference Francis PM, Beals S, Rekate HL, Pittman HW, Manwaring K, Reiff J (1992) Chronic tonsillar herniation and Crouzon’s syndrome. Pediatr Neurosurg 18:202–206PubMed Francis PM, Beals S, Rekate HL, Pittman HW, Manwaring K, Reiff J (1992) Chronic tonsillar herniation and Crouzon’s syndrome. Pediatr Neurosurg 18:202–206PubMed
17.
go back to reference Tokumaru AM, Barkovich AJ, Ciricillo SF, Edwards MSB (1996) Skull base and calvarial deformities: association with intracranial changes in craniofacial syndromes. Am J Neuroradiol 17:619–630PubMed Tokumaru AM, Barkovich AJ, Ciricillo SF, Edwards MSB (1996) Skull base and calvarial deformities: association with intracranial changes in craniofacial syndromes. Am J Neuroradiol 17:619–630PubMed
18.
go back to reference Cohen MM Jr, Kreiborg S, Lammer EJ, Cordero JF, Mastroiacovo P, Erickson JD, Roeper P, Martinez-Frias ML (1992) Birth prevalence study of the Apert syndrome. Am J Med Genet 42:655–659PubMedCrossRef Cohen MM Jr, Kreiborg S, Lammer EJ, Cordero JF, Mastroiacovo P, Erickson JD, Roeper P, Martinez-Frias ML (1992) Birth prevalence study of the Apert syndrome. Am J Med Genet 42:655–659PubMedCrossRef
19.
go back to reference Lajeunie E, Cameron R, El Ghouzi V, de Parseval N, Journeau P, Gonzales M, Delezoide AL, Bonaventure J, Le Merrer M, Renier D (1999) Clinical variability in patients with Apert’s syndrome. J Neurosurg 90:443–447PubMedCrossRef Lajeunie E, Cameron R, El Ghouzi V, de Parseval N, Journeau P, Gonzales M, Delezoide AL, Bonaventure J, Le Merrer M, Renier D (1999) Clinical variability in patients with Apert’s syndrome. J Neurosurg 90:443–447PubMedCrossRef
20.
go back to reference Patton MA, Goodship J, Hayward R, Lansdown R (1988) Intellectual development in Apert’s syndrome: a long term follow-up of 29 patients. J Med Genet 25:164–167PubMed Patton MA, Goodship J, Hayward R, Lansdown R (1988) Intellectual development in Apert’s syndrome: a long term follow-up of 29 patients. J Med Genet 25:164–167PubMed
21.
go back to reference Maksem JA, Roessmann U (1979) Apert’s syndrome with central nervous system anomalies. Acta Neuropathol 48:59–61PubMedCrossRef Maksem JA, Roessmann U (1979) Apert’s syndrome with central nervous system anomalies. Acta Neuropathol 48:59–61PubMedCrossRef
22.
go back to reference De Leon GA, de Leon G, Grover WD, Zaeri N, Alburger PD (1987) Agenesis of the corpus callosum and limbic malformation in Apert syndrome (type I acrocephalosyndactyly). Arch Neurol 44:979–982PubMed De Leon GA, de Leon G, Grover WD, Zaeri N, Alburger PD (1987) Agenesis of the corpus callosum and limbic malformation in Apert syndrome (type I acrocephalosyndactyly). Arch Neurol 44:979–982PubMed
23.
go back to reference Cohen MM Jr, Kreiborg S (1990) The central nervous system in the Apert syndrome. Am J Med Genet 35:36–45PubMedCrossRef Cohen MM Jr, Kreiborg S (1990) The central nervous system in the Apert syndrome. Am J Med Genet 35:36–45PubMedCrossRef
24.
go back to reference Cohen MM Jr, Kreiborg S (1993) An updated pediatric perspective on the Apert syndrome. Am J Dis Child 147:989–993PubMed Cohen MM Jr, Kreiborg S (1993) An updated pediatric perspective on the Apert syndrome. Am J Dis Child 147:989–993PubMed
25.
go back to reference Yacubian-Fernandes A, Palhares A, Giglio A, Gabarra RC, Zanini S, Portela L, Plese JPP (2004) Apert syndrome: analysis of associated brain malformations and conformational changes determined by surgical treatment. J Neuroradiol 31:116–122PubMedCrossRef Yacubian-Fernandes A, Palhares A, Giglio A, Gabarra RC, Zanini S, Portela L, Plese JPP (2004) Apert syndrome: analysis of associated brain malformations and conformational changes determined by surgical treatment. J Neuroradiol 31:116–122PubMedCrossRef
26.
go back to reference Quitero-Rivera F, Robson CD, Reiss RE, Levine D, Benson CB, Mulliken JB, Kimonis VE (2006) Intracranial anomalies detected by imaging studies in 30 patients with Apert syndrome. Am J Med Genet Part A 140A:1337–1338CrossRef Quitero-Rivera F, Robson CD, Reiss RE, Levine D, Benson CB, Mulliken JB, Kimonis VE (2006) Intracranial anomalies detected by imaging studies in 30 patients with Apert syndrome. Am J Med Genet Part A 140A:1337–1338CrossRef
27.
go back to reference Renier D, Arnaud E, Cinalli G, Sebag G, Zerah M, Marchac D (1996) Prognosis for mental function in Apert’s syndrome. J Neurosurg 85:66–72PubMed Renier D, Arnaud E, Cinalli G, Sebag G, Zerah M, Marchac D (1996) Prognosis for mental function in Apert’s syndrome. J Neurosurg 85:66–72PubMed
28.
go back to reference Yacubian-Fernandes A, Palhares A, Giglio A, Gabarra RC, Zanini S, Portela L, Silva MV, Perosa GB, Abramides D, Plese JPP (2005) Apert syndrome: factors involved in the cognitive development. Arq Neuropsiquiatr 63:963–968PubMed Yacubian-Fernandes A, Palhares A, Giglio A, Gabarra RC, Zanini S, Portela L, Silva MV, Perosa GB, Abramides D, Plese JPP (2005) Apert syndrome: factors involved in the cognitive development. Arq Neuropsiquiatr 63:963–968PubMed
29.
go back to reference Cinalli G, Renier D, Sebag G, Sainte-Rose C, Arnaud E, Pierre-Kahn A (1995) Chronic tonsillar herniation in Crouzon and Apert’s syndromes: the role of premature synostosis of the lambdoid suture. J Neurosurg 83:575–582PubMed Cinalli G, Renier D, Sebag G, Sainte-Rose C, Arnaud E, Pierre-Kahn A (1995) Chronic tonsillar herniation in Crouzon and Apert’s syndromes: the role of premature synostosis of the lambdoid suture. J Neurosurg 83:575–582PubMed
30.
go back to reference Raybaud C, Girard N (2005) Malformations of the telencephalic commissures. In: Tortori-Donati P, Rossi A, Biancheri R (eds) Pediatric neuroradiology. Springer, Berlin, pp 41–69 Raybaud C, Girard N (2005) Malformations of the telencephalic commissures. In: Tortori-Donati P, Rossi A, Biancheri R (eds) Pediatric neuroradiology. Springer, Berlin, pp 41–69
31.
go back to reference Shu T, Shen WB, Richards LJ (2001) Development of the perforating pathway: an ipsilateral pathway between the medial septum/diagonal band of Broca and the cingulate cortex that intersects the corpus callosum. J Comp Neurol 436:411–422PubMedCrossRef Shu T, Shen WB, Richards LJ (2001) Development of the perforating pathway: an ipsilateral pathway between the medial septum/diagonal band of Broca and the cingulate cortex that intersects the corpus callosum. J Comp Neurol 436:411–422PubMedCrossRef
32.
go back to reference ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Roteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442PubMedCrossRef ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Roteveel J (2004) Development and malformations of the human pyramidal tract. J Neurol 251:1429–1442PubMedCrossRef
33.
go back to reference Hoefkens M, Vermeij-Keers C, Vaandrager JM (2004) Crouzon syndrome phenotypic signs and symptoms of the postnatally expressed subtype. J Craniofac Surg 15:233–242PubMedCrossRef Hoefkens M, Vermeij-Keers C, Vaandrager JM (2004) Crouzon syndrome phenotypic signs and symptoms of the postnatally expressed subtype. J Craniofac Surg 15:233–242PubMedCrossRef
34.
go back to reference Proudman TW, Clark BE, Moore MH, Abbott AH, David DJ (1995) Central nervous system imaging in Crouzon’s syndrome. J Craniofac Surg 6:401–405PubMedCrossRef Proudman TW, Clark BE, Moore MH, Abbott AH, David DJ (1995) Central nervous system imaging in Crouzon’s syndrome. J Craniofac Surg 6:401–405PubMedCrossRef
35.
go back to reference Taravath S, Tonsgard JH (1993) Cerebral malformation in Carpenter syndrome. Pediat Neurol 9:230–234CrossRefPubMed Taravath S, Tonsgard JH (1993) Cerebral malformation in Carpenter syndrome. Pediat Neurol 9:230–234CrossRefPubMed
36.
go back to reference Demyanenko GP, Tsay AY, Maness PF (1999) Abnormalities in neuronal process extension, hippocampal development and the ventricular system of L1 knockout mice. J Neurosci 19:4907–4920PubMed Demyanenko GP, Tsay AY, Maness PF (1999) Abnormalities in neuronal process extension, hippocampal development and the ventricular system of L1 knockout mice. J Neurosci 19:4907–4920PubMed
37.
go back to reference Finckh U, Schröder J, Ressler B, Veske A, Gal A (2000) Spectrum of detection rate of L1CAM mutations in isolated and familial cases with suspected L1-disease. Am J Med Genet 92:40–46PubMedCrossRef Finckh U, Schröder J, Ressler B, Veske A, Gal A (2000) Spectrum of detection rate of L1CAM mutations in isolated and familial cases with suspected L1-disease. Am J Med Genet 92:40–46PubMedCrossRef
38.
go back to reference Kamiguchi H, Lemmon V (1997) Neural cell adhesion molecule L1: signaling pathways and growth cone motility. J Neurosc Res 49:1–8CrossRef Kamiguchi H, Lemmon V (1997) Neural cell adhesion molecule L1: signaling pathways and growth cone motility. J Neurosc Res 49:1–8CrossRef
39.
go back to reference Doherty P, Walsh F (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8:99–111CrossRef Doherty P, Walsh F (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8:99–111CrossRef
Metadata
Title
Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review
Authors
Charles Raybaud
Concezio Di Rocco
Publication date
01-12-2007
Publisher
Springer-Verlag
Published in
Child's Nervous System / Issue 12/2007
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-007-0474-7

Other articles of this Issue 12/2007

Child's Nervous System 12/2007 Go to the issue