Skip to main content
Top
Published in: World Journal of Urology 6/2019

01-06-2019 | Original Article

Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines

Authors: Hale Samli, Murat Samli, Buse Vatansever, Sena Ardicli, Nazlihan Aztopal, Deniz Dincel, Ahmet Sahin, Faruk Balci

Published in: World Journal of Urology | Issue 6/2019

Login to get access

Abstract

Purpose

To investigate the expression profiles of 86 miRNAs in paclitaxel-resistant prostate cancer cell lines and to identify the genes that have a role in the development of drug resistance.

Methods

Three prostate cancer cell lines, androgen-dependent VCaP, androgen-independent PC-3 and DU-145, were used to obtain paclitaxel-resistant cells by progressively increasing the concentration of paclitaxel in the culture medium. Viability assays with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium and sulforhodamine B were used to assess the cell resistance level and cytotoxic effects of paclitaxel treatment. Total RNA was isolated from both prostate cancer cell lines and their resistant versions, and cDNA samples were reverse transcribed from total RNA. Selected target genes of miRNAs that showed differences in expression and were estimated to be effective on drug resistance mechanism were analyzed with western blot analysis.

Results

Expression study of 86 miRNAs by RT-PCR demonstrated that several of the miRNAs were expressed at different levels in paclitaxel-resistant cells compared to wild-type cells. Moreover, the expression profiles of these miRNAs varied among different prostate cancer cell line types, with 13 miRNAs being up-regulated in the resistant cells. Among these, miR-200b-3p, miR-34b-3p and miR-375 exhibited a marked up-regulation. Further, miR-100-5p showed a prominent increase in paclitaxel-resistant VCaP-R and DU145-R cells. Western blot and RT-PCR studies showed that only the LARP1 and CCND1 genes were over-expressed up to 2–5 times in all paclitaxel-resistant cell lines compared to the other investigated genes.

Conclusions

In this study, the three paclitaxel-resistant prostate cancer cell lines examined showed remarkably different miRNA expression profiles.
Literature
1.
2.
go back to reference Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRef Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRef
3.
go back to reference Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRef Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRef
4.
go back to reference Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864CrossRefPubMedPubMedCentral Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864CrossRefPubMedPubMedCentral
5.
go back to reference Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565CrossRefPubMed Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565CrossRefPubMed
6.
go back to reference Li Y, Zeng Y, Mooney SM, Yin B, Mizokami A, Namiki M, Getzenberg RH (2011) Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells. J Cell Biochem 112(8):2125–2137CrossRefPubMedPubMedCentral Li Y, Zeng Y, Mooney SM, Yin B, Mizokami A, Namiki M, Getzenberg RH (2011) Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells. J Cell Biochem 112(8):2125–2137CrossRefPubMedPubMedCentral
7.
go back to reference Cohen SM, Brennecke J, Stark A (2006) Denoising feedback loops by thresholding—a new role for microRNAs. Genes Dev 20:2769–2772CrossRefPubMed Cohen SM, Brennecke J, Stark A (2006) Denoising feedback loops by thresholding—a new role for microRNAs. Genes Dev 20:2769–2772CrossRefPubMed
8.
go back to reference Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377(1):114–119CrossRefPubMed Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377(1):114–119CrossRefPubMed
9.
go back to reference Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A, Sato A, Kondo S, Kojima T, Deguchi T, Ito M (2010) MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 285(25):19076–19084CrossRefPubMedPubMedCentral Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A, Sato A, Kondo S, Kojima T, Deguchi T, Ito M (2010) MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 285(25):19076–19084CrossRefPubMedPubMedCentral
10.
go back to reference Puhr M, Hoefer J, Schäfer G, Erb HH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z (2012) Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 181(6):2188–2201CrossRefPubMed Puhr M, Hoefer J, Schäfer G, Erb HH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z (2012) Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 181(6):2188–2201CrossRefPubMed
11.
go back to reference Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M (2015) miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 75(14):1568–1578CrossRefPubMed Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M (2015) miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 75(14):1568–1578CrossRefPubMed
12.
go back to reference Shi G-H, Ye D-W, Yao X-D, Zhang S-L, Dai B, Zhang H-L, Shen Y-J, Zhu Y, Zhu Y-P, Xiao W-J, Ma C-G (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873CrossRefPubMedPubMedCentral Shi G-H, Ye D-W, Yao X-D, Zhang S-L, Dai B, Zhang H-L, Shen Y-J, Zhu Y, Zhu Y-P, Xiao W-J, Ma C-G (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873CrossRefPubMedPubMedCentral
13.
go back to reference Lobert VH, Bruun J, Abrahamsen H, Lothe RA, Stenmark H, Kolberg M, Campsteijn C (2013) Antibody crossreactivity between the tumour suppressor PHLPP1 and the proto-oncogene β-catenin. EMBO Rep 14:10–11CrossRefPubMed Lobert VH, Bruun J, Abrahamsen H, Lothe RA, Stenmark H, Kolberg M, Campsteijn C (2013) Antibody crossreactivity between the tumour suppressor PHLPP1 and the proto-oncogene β-catenin. EMBO Rep 14:10–11CrossRefPubMed
14.
go back to reference Geney R, Ungureanu LM, Li D, Ojima I (2002) Overcoming multidrug resistance in taxane chemotherapy. Clin Chem Lab Med 40(9):918–925CrossRefPubMed Geney R, Ungureanu LM, Li D, Ojima I (2002) Overcoming multidrug resistance in taxane chemotherapy. Clin Chem Lab Med 40(9):918–925CrossRefPubMed
15.
go back to reference Patel N, Chatterjee SK, Vrbanac V, Chung I, Chunyao JM, Olsen RR, Waghorne C, Zetter BR (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107(6):2503–2508CrossRefPubMed Patel N, Chatterjee SK, Vrbanac V, Chung I, Chunyao JM, Olsen RR, Waghorne C, Zetter BR (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107(6):2503–2508CrossRefPubMed
16.
go back to reference Leite KRM, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N, Srougi M (2013) MicroRNA 100: a context dependent miRNA in prostate cancer. Clinics 68(6):797–802CrossRefPubMedPubMedCentral Leite KRM, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N, Srougi M (2013) MicroRNA 100: a context dependent miRNA in prostate cancer. Clinics 68(6):797–802CrossRefPubMedPubMedCentral
17.
go back to reference Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Goncalves CS, Costa BM, Henrique R, Jeronimo C (2015) MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenet 7(1):42–55CrossRef Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Goncalves CS, Costa BM, Henrique R, Jeronimo C (2015) MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenet 7(1):42–55CrossRef
18.
go back to reference Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R (2013) miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 19(1):73–84CrossRefPubMed Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R (2013) miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 19(1):73–84CrossRefPubMed
19.
go back to reference Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914CrossRefPubMedPubMedCentral Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914CrossRefPubMedPubMedCentral
20.
go back to reference Feng B, Wang R, Chen L-B (2012) Review of MiR-200b and cancer chemosensitivity. Biomed Pharmacother 66:397–402CrossRefPubMed Feng B, Wang R, Chen L-B (2012) Review of MiR-200b and cancer chemosensitivity. Biomed Pharmacother 66:397–402CrossRefPubMed
21.
go back to reference Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic MicroRNA cluster, miR-17-92, Is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632CrossRef Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic MicroRNA cluster, miR-17-92, Is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632CrossRef
22.
go back to reference Zhang J, Song Y, Zhang C, Zhi X, Fu H, Ma Y, Chen Y, Pan F, Wang K, Ni J, Jin W, He X, Su H, Cui D (2016) Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics 5(7):733–745CrossRef Zhang J, Song Y, Zhang C, Zhi X, Fu H, Ma Y, Chen Y, Pan F, Wang K, Ni J, Jin W, He X, Su H, Cui D (2016) Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics 5(7):733–745CrossRef
23.
go back to reference Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, Kuroda M (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4(5):e5532–e5535CrossRefPubMedPubMedCentral Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, Kuroda M (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4(5):e5532–e5535CrossRefPubMedPubMedCentral
24.
go back to reference Wang Y, Sun B, Sun H, Zhao X, Wang X, Zhao N, Zhang Y, Li Y, Gu Q, Liu F, Shao B, An J (2016) Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumor Biol 37(8):10965–10979CrossRef Wang Y, Sun B, Sun H, Zhao X, Wang X, Zhao N, Zhang Y, Li Y, Gu Q, Liu F, Shao B, An J (2016) Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumor Biol 37(8):10965–10979CrossRef
25.
go back to reference Liu Y, Cai Q, Bao PP, Su Y, Cai H, Wu J, Ye F, Guo X, Zheng W, Zheng Y, Shu XO (2015) Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. Breast Cancer Res Treat 152(1):183–191CrossRefPubMedPubMedCentral Liu Y, Cai Q, Bao PP, Su Y, Cai H, Wu J, Ye F, Guo X, Zheng W, Zheng Y, Shu XO (2015) Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. Breast Cancer Res Treat 152(1):183–191CrossRefPubMedPubMedCentral
27.
go back to reference Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H, Bushell M, Willis AE, Curry E, Blagden SP (2014) LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 34:5025–5036CrossRefPubMedPubMedCentral Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H, Bushell M, Willis AE, Curry E, Blagden SP (2014) LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 34:5025–5036CrossRefPubMedPubMedCentral
28.
go back to reference Hopkins TG, Mura M, Al-Ashtal HA, Lahr RM, Abd-Latip N, Sweeney K, Lu H, Weir J, El-Bahrawy M, Steel JH, Ghaem-Maghami S, Aboagye EO, Berman AJ, Blagden SP (2016) The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res 44(3):1227–1246CrossRefPubMed Hopkins TG, Mura M, Al-Ashtal HA, Lahr RM, Abd-Latip N, Sweeney K, Lu H, Weir J, El-Bahrawy M, Steel JH, Ghaem-Maghami S, Aboagye EO, Berman AJ, Blagden SP (2016) The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res 44(3):1227–1246CrossRefPubMed
29.
go back to reference Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP (2014) Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev 28(4):357–371CrossRefPubMedPubMedCentral Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP (2014) Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev 28(4):357–371CrossRefPubMedPubMedCentral
30.
go back to reference Kato M, Goto Y, Matsushita R, Kurozumi A, Fukumoto I, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, Seki N (2015) MicroRNA-26a/b directly regulate la-related protein 1 and inhibit cancer cell invasion in prostate cancer. Int J Oncol 47(2):710–718CrossRefPubMed Kato M, Goto Y, Matsushita R, Kurozumi A, Fukumoto I, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, Seki N (2015) MicroRNA-26a/b directly regulate la-related protein 1 and inhibit cancer cell invasion in prostate cancer. Int J Oncol 47(2):710–718CrossRefPubMed
31.
go back to reference Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221CrossRefPubMedPubMedCentral Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221CrossRefPubMedPubMedCentral
32.
go back to reference Yin S, Xu L, Bandyopadhyay S, Sethi S, Reddy KB (2011) Cisplatin and TRAIL enhance breast cancer stem cell death. Int J Oncol 39(4):891–898PubMedPubMedCentral Yin S, Xu L, Bandyopadhyay S, Sethi S, Reddy KB (2011) Cisplatin and TRAIL enhance breast cancer stem cell death. Int J Oncol 39(4):891–898PubMedPubMedCentral
33.
go back to reference Xu W-S, Dang Y-Y, Chen X-P, Lu J-J, Wang Y-T (2013) Furanodiene presents synergistic anti-proliferative activity with paclitaxel via altering cell cycle and integrin signaling in 95-D lung cancer cells. Phytother Res 28(2):296–299CrossRefPubMed Xu W-S, Dang Y-Y, Chen X-P, Lu J-J, Wang Y-T (2013) Furanodiene presents synergistic anti-proliferative activity with paclitaxel via altering cell cycle and integrin signaling in 95-D lung cancer cells. Phytother Res 28(2):296–299CrossRefPubMed
34.
go back to reference Jin H, Park M, Kim S (2015) 3,3′-Diindolylmethane potentiates paclitaxel-induced antitumor effects on gastric cancer cells through the Akt/FOXM1 signaling cascade. Oncol Rep 33:2031–2036CrossRefPubMed Jin H, Park M, Kim S (2015) 3,3′-Diindolylmethane potentiates paclitaxel-induced antitumor effects on gastric cancer cells through the Akt/FOXM1 signaling cascade. Oncol Rep 33:2031–2036CrossRefPubMed
35.
go back to reference van Jaarsveld MTM, van Kuijk PF, Boersma AW, Helleman J, van IJcken WF, Mathijssen RH, Berns EM, Pothof J, Verweij J, Wiemer EA (2015) miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer 14:196–208CrossRefPubMedPubMedCentral van Jaarsveld MTM, van Kuijk PF, Boersma AW, Helleman J, van IJcken WF, Mathijssen RH, Berns EM, Pothof J, Verweij J, Wiemer EA (2015) miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer 14:196–208CrossRefPubMedPubMedCentral
Metadata
Title
Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines
Authors
Hale Samli
Murat Samli
Buse Vatansever
Sena Ardicli
Nazlihan Aztopal
Deniz Dincel
Ahmet Sahin
Faruk Balci
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
World Journal of Urology / Issue 6/2019
Print ISSN: 0724-4983
Electronic ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-018-2501-6

Other articles of this Issue 6/2019

World Journal of Urology 6/2019 Go to the issue