Skip to main content
Top
Published in: European Radiology 12/2023

30-06-2023 | Myocardial Infarction | Cardiac

A deep learning method for the automated assessment of paradoxical pulsation after myocardial infarction using multicenter cardiac MRI data

Authors: Bing-Hua Chen, Chong-Wen Wu, Dong-Aolei An, Ji-Lei Zhang, Yi-Hong Zhang, Ling-Zhan Yu, Kennedy Watson, Luke Wesemann, Jiani Hu, Wei-Bo Chen, Jian-Rong Xu, Lei Zhao, ChaoLu Feng, Meng Jiang, Jun Pu, Lian-Ming Wu

Published in: European Radiology | Issue 12/2023

Login to get access

Abstract

Objective

The current study aimed to explore a deep convolutional neural network (DCNN) model that integrates multidimensional CMR data to accurately identify LV paradoxical pulsation after reperfusion by primary percutaneous coronary intervention with isolated anterior infarction.

Methods

A total of 401 participants (311 patients and 90 age-matched volunteers) were recruited for this prospective study. The two-dimensional UNet segmentation model of the LV and classification model for identifying paradoxical pulsation were established using the DCNN model. Features of 2- and 3-chamber images were extracted with 2-dimensional (2D) and 3D ResNets with masks generated by a segmentation model. Next, the accuracy of the segmentation model was evaluated using the Dice score and classification model by receiver operating characteristic (ROC) curve and confusion matrix. The areas under the ROC curve (AUCs) of the physicians in training and DCNN models were compared using the DeLong method.

Results

The DCNN model showed that the AUCs for the detection of paradoxical pulsation were 0.97, 0.91, and 0.83 in the training, internal, and external testing cohorts, respectively (p < 0.001). The 2.5-dimensional model established using the end-systolic and end-diastolic images combined with 2-chamber and 3-chamber images was more efficient than the 3D model. The discrimination performance of the DCNN model was better than that of physicians in training (p < 0.05).

Conclusions

Compared to the model trained by 2-chamber or 3-chamber images alone or 3D multiview, our 2.5D multiview model can combine the information of 2-chamber and 3-chamber more efficiently and obtain the highest diagnostic sensitivity.

Clinical relevance statement

A deep convolutional neural network model that integrates 2-chamber and 3-chamber CMR images can identify LV paradoxical pulsation which correlates with LV thrombosis, heart failure, ventricular tachycardia after reperfusion by primary percutaneous coronary intervention with isolated anterior infarction.

Key Points

• The epicardial segmentation model was established using the 2D UNet based on end-diastole 2- and 3-chamber cine images.
• The DCNN model proposed in this study had better performance for discriminating LV paradoxical pulsation accurately and objectively using CMR cine images after anterior AMI compared to the diagnosis of physicians in training.
• The 2.5-dimensional multiview model combined the information of 2- and 3-chamber efficiently and obtained the highest diagnostic sensitivity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kidambi A, Motwani M, Uddin A et al (2017) Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI. JACC Cardiovasc Imaging 10:989–999CrossRefPubMedPubMedCentral Kidambi A, Motwani M, Uddin A et al (2017) Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI. JACC Cardiovasc Imaging 10:989–999CrossRefPubMedPubMedCentral
2.
go back to reference D’Elia N, D’Hooge J, Marwick TH (2015) Association between myocardial mechanics and ischemic LV remodeling. JACC Cardiovasc Imaging 8:1430–1443CrossRefPubMed D’Elia N, D’Hooge J, Marwick TH (2015) Association between myocardial mechanics and ischemic LV remodeling. JACC Cardiovasc Imaging 8:1430–1443CrossRefPubMed
3.
go back to reference Cabin HS, Roberts WC (1980) Left ventricular aneurysm, intraaneurysmal thrombus and systemic embolus in coronary heart disease. Chest 77:586–590CrossRefPubMed Cabin HS, Roberts WC (1980) Left ventricular aneurysm, intraaneurysmal thrombus and systemic embolus in coronary heart disease. Chest 77:586–590CrossRefPubMed
4.
go back to reference Konen E, Merchant N, Gutierrez C et al (2005) True versus false left ventricular aneurysm: differentiation with MR imaging–initial experience. Radiology 236:65–70CrossRefPubMed Konen E, Merchant N, Gutierrez C et al (2005) True versus false left ventricular aneurysm: differentiation with MR imaging–initial experience. Radiology 236:65–70CrossRefPubMed
5.
go back to reference Meizlish J, Berger H, Plankey M, Errico D, Levy W, Zaret B (1984) Functional left ventricular aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural history, and prognostic implications. N Engl J Med 311:1001–1006CrossRefPubMed Meizlish J, Berger H, Plankey M, Errico D, Levy W, Zaret B (1984) Functional left ventricular aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural history, and prognostic implications. N Engl J Med 311:1001–1006CrossRefPubMed
6.
go back to reference Shen W, Tribouilloy C, Mirode A, Dufossé H, Lesbre J (1992) Left ventricular aneurysm and prognosis in patients with first acute transmural anterior myocardial infarction and isolated left anterior descending artery disease. Eur Heart J 13:39–44CrossRefPubMed Shen W, Tribouilloy C, Mirode A, Dufossé H, Lesbre J (1992) Left ventricular aneurysm and prognosis in patients with first acute transmural anterior myocardial infarction and isolated left anterior descending artery disease. Eur Heart J 13:39–44CrossRefPubMed
7.
go back to reference Heatlie GJ, Mohiaddin R (2005) Left ventricular aneurysm: comprehensive assessment of morphology, structure and thrombus using cardiovascular magnetic resonance. Clin Radiol 60:687–692CrossRefPubMed Heatlie GJ, Mohiaddin R (2005) Left ventricular aneurysm: comprehensive assessment of morphology, structure and thrombus using cardiovascular magnetic resonance. Clin Radiol 60:687–692CrossRefPubMed
8.
go back to reference Lam C, Gale H, Drake E (1964) Surgical treatment of left ventricular aneurysms. JAMA 187:1-3 Lam C, Gale H, Drake E (1964) Surgical treatment of left ventricular aneurysms. JAMA 187:1-3
9.
go back to reference Matsumoto M, Watanabe F, Goto A et al (1985) Left ventricular aneurysm and the prediction of left ventricular enlargement studied by two-dimensional echocardiography: quantitative assessment of aneurysm size in relation to clinical course. Circulation 72:280–286CrossRefPubMed Matsumoto M, Watanabe F, Goto A et al (1985) Left ventricular aneurysm and the prediction of left ventricular enlargement studied by two-dimensional echocardiography: quantitative assessment of aneurysm size in relation to clinical course. Circulation 72:280–286CrossRefPubMed
10.
go back to reference Zhou H, Li L, Liu Z et al (2021) Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur Radiol 31:3931–3940CrossRefPubMed Zhou H, Li L, Liu Z et al (2021) Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur Radiol 31:3931–3940CrossRefPubMed
11.
go back to reference Montalt-Tordera J, Quail M, Steeden JA, Muthurangu V (2021) Reducing contrast agent dose in cardiovascular MR angiography with deep learning. J Magn Reson Imaging 54:795–805CrossRefPubMedPubMedCentral Montalt-Tordera J, Quail M, Steeden JA, Muthurangu V (2021) Reducing contrast agent dose in cardiovascular MR angiography with deep learning. J Magn Reson Imaging 54:795–805CrossRefPubMedPubMedCentral
12.
go back to reference Hamilton JI, Currey D, Rajagopalan S, Seiberlich N (2021) Deep learning reconstruction for cardiac magnetic resonance fingerprinting T1 and T2 mapping. Magn Reson Med 85:2127–2135CrossRefPubMed Hamilton JI, Currey D, Rajagopalan S, Seiberlich N (2021) Deep learning reconstruction for cardiac magnetic resonance fingerprinting T1 and T2 mapping. Magn Reson Med 85:2127–2135CrossRefPubMed
13.
go back to reference Ghadimi S, Auger DA, Feng X et al (2021) Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J Cardiovasc Magn Reson 23:20CrossRefPubMedPubMedCentral Ghadimi S, Auger DA, Feng X et al (2021) Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J Cardiovasc Magn Reson 23:20CrossRefPubMedPubMedCentral
15.
go back to reference Litjens G, Ciompi F, Wolterink JM et al (2019) State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging 12:1549–1565CrossRefPubMed Litjens G, Ciompi F, Wolterink JM et al (2019) State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging 12:1549–1565CrossRefPubMed
17.
go back to reference Martini N, Aimo A, Barison A et al (2020) Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22:84CrossRefPubMedPubMedCentral Martini N, Aimo A, Barison A et al (2020) Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22:84CrossRefPubMedPubMedCentral
20.
go back to reference Thygesen K, Alpert JS, Jaffe AS et al (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 72:2231–2264CrossRefPubMed Thygesen K, Alpert JS, Jaffe AS et al (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 72:2231–2264CrossRefPubMed
21.
go back to reference Douglas PZ, Peter L, Robert OB, Douglas LM, Gordon FT, Eugene B (2018) Braunwald’s heart disease: a textbook of cardiovascular medicine, 11th Edition. Elsevier, Canada. BMH Med J:3067–3069 Douglas PZ, Peter L, Robert OB, Douglas LM, Gordon FT, Eugene B (2018) Braunwald’s heart disease: a textbook of cardiovascular medicine, 11th Edition. Elsevier, Canada. BMH Med J:3067–3069
22.
go back to reference Joyce E, Hoogslag GE, Leong DP et al (2014) Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 7:74–81CrossRefPubMed Joyce E, Hoogslag GE, Leong DP et al (2014) Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 7:74–81CrossRefPubMed
24.
go back to reference Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J (2020) Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging 13:180–182CrossRefPubMed Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J (2020) Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging 13:180–182CrossRefPubMed
25.
go back to reference Mehta RH, Harjai KJ, Cox D et al (2003) Clinical and angiographic correlates and outcomes of suboptimal coronary flow inpatients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Am Coll Cardiol 42:1739–1746CrossRefPubMed Mehta RH, Harjai KJ, Cox D et al (2003) Clinical and angiographic correlates and outcomes of suboptimal coronary flow inpatients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Am Coll Cardiol 42:1739–1746CrossRefPubMed
26.
go back to reference Writing Group M, Mozaffarian D, Benjamin EJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38-360 Writing Group M, Mozaffarian D, Benjamin EJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38-360
27.
go back to reference Gupta KB, Ratcliffe MB, Fallert MA, Edmunds LH Jr, Bogen DK (1994) Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326CrossRefPubMed Gupta KB, Ratcliffe MB, Fallert MA, Edmunds LH Jr, Bogen DK (1994) Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326CrossRefPubMed
28.
go back to reference Goldberg RJ, Konstam MA (1999) Assessing the population burden from heart failure: need for sentinel population-based surveillance systems. Arch Intern Med 159:15–17CrossRefPubMed Goldberg RJ, Konstam MA (1999) Assessing the population burden from heart failure: need for sentinel population-based surveillance systems. Arch Intern Med 159:15–17CrossRefPubMed
29.
go back to reference Shah AM, Solomon SD (2010) A unified view of ventricular remodelling. Eur J Heart Fail 12:779–781CrossRefPubMed Shah AM, Solomon SD (2010) A unified view of ventricular remodelling. Eur J Heart Fail 12:779–781CrossRefPubMed
30.
go back to reference Pezel T, Viallon M, Croisille P et al (2021) Imaging Interstitial fibrosis, left ventricular remodeling, and function in stage A and B heart failure. JACC Cardiovasc Imaging 14:1038–1052CrossRefPubMed Pezel T, Viallon M, Croisille P et al (2021) Imaging Interstitial fibrosis, left ventricular remodeling, and function in stage A and B heart failure. JACC Cardiovasc Imaging 14:1038–1052CrossRefPubMed
31.
go back to reference Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method for fully automatic quantification of left ventricle function from cine mr images: a multivendor, multicenter study. Radiology 290:81–88CrossRefPubMed Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method for fully automatic quantification of left ventricle function from cine mr images: a multivendor, multicenter study. Radiology 290:81–88CrossRefPubMed
32.
go back to reference Zhang N, Yang G, Gao Z et al (2019) Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac Cine MRI. Radiology 291:606–617CrossRefPubMed Zhang N, Yang G, Gao Z et al (2019) Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac Cine MRI. Radiology 291:606–617CrossRefPubMed
33.
go back to reference Kusunose K, Abe T, Haga A et al (2020) A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc Imaging 13:374–381CrossRefPubMed Kusunose K, Abe T, Haga A et al (2020) A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc Imaging 13:374–381CrossRefPubMed
34.
go back to reference Pandey A, Kagiyama N, Yanamala N et al (2021) Deep-Learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging 14:1887–1900CrossRefPubMed Pandey A, Kagiyama N, Yanamala N et al (2021) Deep-Learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging 14:1887–1900CrossRefPubMed
35.
go back to reference Heras M, Sanz G, Betriu A, Mont L, de Flores T, Navarro-López F (1990) Does left ventricular aneurysm influence survival after acute myocardial infarction? Eur Heart J 11:441–446 Heras M, Sanz G, Betriu A, Mont L, de Flores T, Navarro-López F (1990) Does left ventricular aneurysm influence survival after acute myocardial infarction? Eur Heart J 11:441–446
36.
go back to reference Gong FF, Vaitenas I, Malaisrie SC, Maganti K (2021) Mechanical complications of acute myocardial infarction: a review. JAMA Cardiol 6:341–349CrossRefPubMed Gong FF, Vaitenas I, Malaisrie SC, Maganti K (2021) Mechanical complications of acute myocardial infarction: a review. JAMA Cardiol 6:341–349CrossRefPubMed
Metadata
Title
A deep learning method for the automated assessment of paradoxical pulsation after myocardial infarction using multicenter cardiac MRI data
Authors
Bing-Hua Chen
Chong-Wen Wu
Dong-Aolei An
Ji-Lei Zhang
Yi-Hong Zhang
Ling-Zhan Yu
Kennedy Watson
Luke Wesemann
Jiani Hu
Wei-Bo Chen
Jian-Rong Xu
Lei Zhao
ChaoLu Feng
Meng Jiang
Jun Pu
Lian-Ming Wu
Publication date
30-06-2023
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2023
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-09807-6

Other articles of this Issue 12/2023

European Radiology 12/2023 Go to the issue