Skip to main content
Top
Published in: European Radiology 2/2022

01-02-2022 | Artificial Intelligence | Musculoskeletal

Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM)

Authors: Liping Si, Jingyu Zhong, Jiayu Huo, Kai Xuan, Zixu Zhuang, Yangfan Hu, Qian Wang, Huan Zhang, Weiwu Yao

Published in: European Radiology | Issue 2/2022

Login to get access

Abstract

Purpose

Our purposes were (1) to explore the methodologic quality of the studies on the deep learning in knee imaging with CLAIM criterion and (2) to offer our vision for the development of CLAIM to assure high-quality reports about the application of AI to medical imaging in knee joint.

Materials and methods

A Checklist for Artificial Intelligence in Medical Imaging systematic review was conducted from January 1, 2015, to June 1, 2020, using PubMed, EMBASE, and Web of Science databases. A total of 36 articles discussing deep learning applications in knee joint imaging were identified, divided by imaging modality, and characterized by imaging task, data source, algorithm type, and outcome metrics.

Results

A total of 36 studies were identified and divided into: X-ray (44.44%) and MRI (55.56%). The mean CLAIM score of the 36 studies was 27.94 (standard deviation, 4.26), which was 66.53% of the ideal score of 42.00. The CLAIM items achieved an average good inter-rater agreement (ICC 0.815, 95% CI 0.660–0.902). In total, 32 studies performed internal cross-validation on the data set, while only 4 studies conducted external validation of the data set.

Conclusions

The overall scientific quality of deep learning in knee imaging is insufficient; however, deep learning remains a promising technology for diagnostic or predictive purpose. Improvements in study design, validation, and open science need to be made to demonstrate the generalizability of findings and to achieve clinical applications. Widespread application, pre-trained scoring procedure, and modification of CLAIM in response to clinical needs are necessary in the future.

Key Points

Limited deep learning studies were established in knee imaging with mean score of 27.94, which was 66.53% of the ideal score of 42.00, commonly due to invalidated results, retrospective study design, and absence of a clear definition of the CLAIM items in detail.
A previous trained data extraction instrument allowed reaching moderate inter-rater agreement in the application of the CLAIM, while CLAIM still needs improvement in scoring items and result reporting to become a wide adaptive tool in reviews of deep learning studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK (2014) Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73:1659–1664CrossRef Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK (2014) Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73:1659–1664CrossRef
2.
go back to reference Turkiewicz A, Petersson IF, Bjork J et al (2014) Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthritis Cartilage 22:1826–1832CrossRef Turkiewicz A, Petersson IF, Bjork J et al (2014) Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthritis Cartilage 22:1826–1832CrossRef
3.
go back to reference Roemer FW, Demehri S, Omoumi P et al (2020) State of the art: imaging of osteoarthritis-revisited 2020. Radiology 296(1):5–21CrossRef Roemer FW, Demehri S, Omoumi P et al (2020) State of the art: imaging of osteoarthritis-revisited 2020. Radiology 296(1):5–21CrossRef
4.
go back to reference Dunn R, Greenhouse J, James D, Ohlssen D, Mesenbrink P (2020) Risk scoring for time to end-stage knee osteoarthritis: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 28(8):1020–1029CrossRef Dunn R, Greenhouse J, James D, Ohlssen D, Mesenbrink P (2020) Risk scoring for time to end-stage knee osteoarthritis: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 28(8):1020–1029CrossRef
5.
go back to reference Zhai G, Sun X, Randel E et al (2021) Phenylalanine is a novel marker for radiographic knee osteoarthritis progression: the MOST study. J Rheumatol 48(1):123–128CrossRef Zhai G, Sun X, Randel E et al (2021) Phenylalanine is a novel marker for radiographic knee osteoarthritis progression: the MOST study. J Rheumatol 48(1):123–128CrossRef
6.
go back to reference Peterfy CG, Guermazi A, Zaim S et al (2004) WORMS of the knee in osteoarthritis. Osteoarthritis Cartilage 12(3):177–190CrossRef Peterfy CG, Guermazi A, Zaim S et al (2004) WORMS of the knee in osteoarthritis. Osteoarthritis Cartilage 12(3):177–190CrossRef
7.
go back to reference Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS. Osteoarthritis Cartilage 19(8):990–1002CrossRef Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS. Osteoarthritis Cartilage 19(8):990–1002CrossRef
8.
go back to reference Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS. Ann Rheum Dis 67(2):206–211CrossRef Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS. Ann Rheum Dis 67(2):206–211CrossRef
9.
go back to reference Peterfy CG, van Dijke CF, Janzen DL et al (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 192:485–491CrossRef Peterfy CG, van Dijke CF, Janzen DL et al (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 192:485–491CrossRef
10.
go back to reference Eckstein F, Le Graver MP, Charles HC et al (2011) Clinical, radiographic, molecular and MRI-based predictors of cartilage loss in knee osteoarthritis. Ann Rheum Dis 70:1223–1230CrossRef Eckstein F, Le Graver MP, Charles HC et al (2011) Clinical, radiographic, molecular and MRI-based predictors of cartilage loss in knee osteoarthritis. Ann Rheum Dis 70:1223–1230CrossRef
11.
go back to reference Eckstein F, Wirth W, Guermazi A, Maschek S, Aydemir A (2015) Intra-articular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using MR imaging. Arthritis Rheumatol 67(11):2916–2922CrossRef Eckstein F, Wirth W, Guermazi A, Maschek S, Aydemir A (2015) Intra-articular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using MR imaging. Arthritis Rheumatol 67(11):2916–2922CrossRef
12.
13.
go back to reference Leung K, Zhang B, Tan J et al (2020) Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the Osteoarthritis Initiative. Radiology 296(3):584–593CrossRef Leung K, Zhang B, Tan J et al (2020) Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the Osteoarthritis Initiative. Radiology 296(3):584–593CrossRef
14.
go back to reference Bien N, Rajpurkar P, Ball RL et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15(11):e1002699CrossRef Bien N, Rajpurkar P, Ball RL et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15(11):e1002699CrossRef
15.
go back to reference Tiulpin A, Klein S, Bierma-Zeinstra SMA et al (2019) Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep 9(1):20038CrossRef Tiulpin A, Klein S, Bierma-Zeinstra SMA et al (2019) Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep 9(1):20038CrossRef
16.
go back to reference Mongan J, Moy L, Kahn CE Jr (2020) Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029CrossRef Mongan J, Moy L, Kahn CE Jr (2020) Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029CrossRef
17.
go back to reference McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4):388–396CrossRef McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4):388–396CrossRef
18.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. BMJ 339:b2535CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. BMJ 339:b2535CrossRef
19.
go back to reference Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1CrossRef Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1CrossRef
20.
go back to reference Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31(3):1526–1535CrossRef Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31(3):1526–1535CrossRef
21.
go back to reference Cohen JA (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRef Cohen JA (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRef
22.
go back to reference Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef
23.
go back to reference Morales Martinez A, Caliva F, Flament I et al (2020) Learning osteoarthritis imaging biomarkers from bone surface spherical encoding. Magn Reson Med 84(4):2190–2203CrossRef Morales Martinez A, Caliva F, Flament I et al (2020) Learning osteoarthritis imaging biomarkers from bone surface spherical encoding. Magn Reson Med 84(4):2190–2203CrossRef
24.
go back to reference Roblot V, Giret Y, Bou Antoun M et al (2019) Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging 100(4):243–249CrossRef Roblot V, Giret Y, Bou Antoun M et al (2019) Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging 100(4):243–249CrossRef
26.
go back to reference Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S (2019) Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging 32(3):471–477CrossRef Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S (2019) Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging 32(3):471–477CrossRef
27.
go back to reference Thomas KA, Kidziński Ł, Halilaj E et al (2020) Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell 2(2):e190065CrossRef Thomas KA, Kidziński Ł, Halilaj E et al (2020) Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell 2(2):e190065CrossRef
28.
go back to reference Chang PD, Wong TT, Rasiej MJ (2019) Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging 32(6):980–986CrossRef Chang PD, Wong TT, Rasiej MJ (2019) Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging 32(6):980–986CrossRef
29.
go back to reference Richardson ML (2021) MR protocol optimization with deep learning: a proof of concept. Curr Probl Diagn Radiol 50(2):168–174CrossRef Richardson ML (2021) MR protocol optimization with deep learning: a proof of concept. Curr Probl Diagn Radiol 50(2):168–174CrossRef
30.
go back to reference Górriz M, Antony J, Mcguinness K, Giró-i-Nieto X, O’Connor NE (2019) Assessing knee OA severity with CNN attention-based end-to-end architectures. In: International Conference on Medical Imaging with Deep Learning. PMLR, pp 197–214 Górriz M, Antony J, Mcguinness K, Giró-i-Nieto X, O’Connor NE (2019) Assessing knee OA severity with CNN attention-based end-to-end architectures. In: International Conference on Medical Imaging with Deep Learning. PMLR, pp 197–214
31.
go back to reference Armanious K, Abdulatif S, Bhaktharaguttu AR et al (2021) Organ-based chronological age estimation based on 3D MRI scans. In: 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, pp 1225–1228 Armanious K, Abdulatif S, Bhaktharaguttu AR et al (2021) Organ-based chronological age estimation based on 3D MRI scans. In: 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, pp 1225–1228
32.
go back to reference Guan B, Liu F, Haj-Mirzaian A et al (2020) Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-month follow-up period. Osteoarthritis Cartilage 28(4):428–437CrossRef Guan B, Liu F, Haj-Mirzaian A et al (2020) Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-month follow-up period. Osteoarthritis Cartilage 28(4):428–437CrossRef
33.
go back to reference Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127(3):349–360CrossRef Sanduleanu S, Woodruff HC, de Jong EEC et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127(3):349–360CrossRef
34.
go back to reference Granzier RWY, van Nijnatten TJA, Woodruff HC et al (2019) Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review. Eur J Radiol 121:108736CrossRef Granzier RWY, van Nijnatten TJA, Woodruff HC et al (2019) Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review. Eur J Radiol 121:108736CrossRef
Metadata
Title
Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM)
Authors
Liping Si
Jingyu Zhong
Jiayu Huo
Kai Xuan
Zixu Zhuang
Yangfan Hu
Qian Wang
Huan Zhang
Weiwu Yao
Publication date
01-02-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08190-4

Other articles of this Issue 2/2022

European Radiology 2/2022 Go to the issue