Skip to main content
Top
Published in: European Radiology 11/2020

Open Access 01-11-2020 | Ultrasound | Musculoskeletal

The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy—a case-control study

Authors: Stephan J. Breda, Arco van der Vlist, Robert-Jan de Vos, Gabriel P. Krestin, Edwin H. G. Oei

Published in: European Radiology | Issue 11/2020

Login to get access

Abstract

Objectives

(1) To determine the association between patellar tendon stiffness and the presence of patellar tendinopathy (PT). (2) To evaluate the reliability of shear-wave elastography (SWE).

Methods

Participants were consecutively enrolled between January 2017 and June 2019. PT was diagnosed clinically and confirmed by either grayscale US or power Doppler US, or both. Controls had no history of anterior knee pain and no clinical signs of PT. Patellar tendon stiffness (kilopascal, kPa) was assessed using SWE. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Reliability analyses included coefficients-of-variation (CV), coefficients-of-repeatability (CR), intraclass correlation coefficient (ICC) for intraobserver and interobserver reliability, and Bland-Altman analysis.

Results

In total, 76 participants with PT (58 men, mean age 24.4 ± 3.8 years) and 35 asymptomatic controls (16 men, mean age 21.5 ± 3.8 years) were included. Univariate analyses (OR 1.094, 95% CI 1.061–1.128, p < .001) and adjusted multivariate analyses (OR 1.294, 95% CI 1.044–1.605, p = .018) showed that athletes with PT had significantly increased patellar tendon stiffness. ICC for intraobserver reliability was 0.95 (95% CI 0.92–0.97), CR (CV) 12 kPa (10%) and 0.79 (95% CI 0.65–0.88), CR (CV) 18 kPa (21%) for interobserver reliability. Mean differences from Bland-Altman analysis were 5.6 kPa (95% CI 3.1–8.1, p < .001) for intraobserver reliability and 4.6 kPa (95% CI 1.9–7.2, p < .001) for interobserver reliability.

Conclusions

PT is associated with significantly higher patellar tendon stiffness. SWE measurements demonstrate excellent intraobserver reliability and good interobserver reliability. Therefore, SWE is a promising tool to implement in longitudinal studies and future studies should evaluate its prognostic value and utility as a monitoring tool in athletes with PT.

Key Points

• Patellar tendon stiffness measured with shear-wave elastography (SWE) is higher in athletes with patellar tendinopathy than in healthy controls, also after adjusting for potential confounders.
• Excellent intraobserver reliability and good interobserver reliability were found for the quantitative assessment of patellar tendon stiffness using SWE.
Literature
1.
go back to reference Cook JL, Purdam CR (2009) Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med 43:409–416CrossRef Cook JL, Purdam CR (2009) Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med 43:409–416CrossRef
2.
go back to reference Lian OB, Engebretsen L, Bahr R (2005) Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33:561–567CrossRef Lian OB, Engebretsen L, Bahr R (2005) Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33:561–567CrossRef
3.
4.
go back to reference Davies SG, Baudouin CJ, King JB, Perry JD (1991) Ultrasound, computed tomography and magnetic resonance imaging in patellar tendinitis. Clin Radiol 43:52–56CrossRef Davies SG, Baudouin CJ, King JB, Perry JD (1991) Ultrasound, computed tomography and magnetic resonance imaging in patellar tendinitis. Clin Radiol 43:52–56CrossRef
5.
go back to reference Weinberg EP, Adams MJ, Hollenberg GM (1998) Color Doppler sonography of patellar tendinosis. AJR Am J Roentgenol 171:743–744CrossRef Weinberg EP, Adams MJ, Hollenberg GM (1998) Color Doppler sonography of patellar tendinosis. AJR Am J Roentgenol 171:743–744CrossRef
6.
go back to reference McAuliffe S, McCreesh K, Culloty F, Purtill H, O'Sullivan K (2016) Can ultrasound imaging predict the development of Achilles and patellar tendinopathy? A systematic review and meta-analysis. Br J Sports Med 50:1516–1523 McAuliffe S, McCreesh K, Culloty F, Purtill H, O'Sullivan K (2016) Can ultrasound imaging predict the development of Achilles and patellar tendinopathy? A systematic review and meta-analysis. Br J Sports Med 50:1516–1523
7.
go back to reference Docking SI, Ooi CC, Connell D (2015) Tendinopathy: is imaging telling us the entire story? J Orthop Sports Phys Ther 45:842–852CrossRef Docking SI, Ooi CC, Connell D (2015) Tendinopathy: is imaging telling us the entire story? J Orthop Sports Phys Ther 45:842–852CrossRef
8.
go back to reference Klauser AS, Faschingbauer R, Jaschke WR (2010) Is sonoelastography of value in assessing tendons? Semin Musculoskelet Radiol 14:323–333CrossRef Klauser AS, Faschingbauer R, Jaschke WR (2010) Is sonoelastography of value in assessing tendons? Semin Musculoskelet Radiol 14:323–333CrossRef
9.
go back to reference Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR (2014) Sonoelastography: musculoskeletal applications. Radiology 272:622–633 Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR (2014) Sonoelastography: musculoskeletal applications. Radiology 272:622–633
10.
go back to reference Barr RG, Nakashima K, Amy D et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast. Ultrasound Med Biol 41:1148–1160CrossRef Barr RG, Nakashima K, Amy D et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast. Ultrasound Med Biol 41:1148–1160CrossRef
11.
go back to reference Ferraioli G, Filice C, Castera L et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol 41:1161–1179CrossRef Ferraioli G, Filice C, Castera L et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol 41:1161–1179CrossRef
12.
go back to reference Cosgrove D, Barr R, Bojunga J et al (2017) WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 4. Thyroid. Ultrasound Med Biol 43:4–26CrossRef Cosgrove D, Barr R, Bojunga J et al (2017) WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 4. Thyroid. Ultrasound Med Biol 43:4–26CrossRef
13.
go back to reference Barr RG, Cosgrove D, Brock M et al (2017) WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate. Ultrasound Med Biol 43:27–48CrossRef Barr RG, Cosgrove D, Brock M et al (2017) WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate. Ultrasound Med Biol 43:27–48CrossRef
14.
go back to reference Zhang ZJ, Ng GY, Lee WC, Fu SN (2014) Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One 9:e108337CrossRef Zhang ZJ, Ng GY, Lee WC, Fu SN (2014) Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One 9:e108337CrossRef
15.
go back to reference Obst SJ, Heales LJ, Schrader BL et al (2018) Are the mechanical or material properties of the Achilles and patellar tendons altered in tendinopathy? A systematic review with meta-analysis. Sports Med 48:2179–2198CrossRef Obst SJ, Heales LJ, Schrader BL et al (2018) Are the mechanical or material properties of the Achilles and patellar tendons altered in tendinopathy? A systematic review with meta-analysis. Sports Med 48:2179–2198CrossRef
16.
go back to reference van der Worp H, van Ark M, Zwerver J, van den Akker-Scheek I (2012) Risk factors for patellar tendinopathy in basketball and volleyball players: a cross-sectional study. Scand J Med Sci Sports 22:783–790CrossRef van der Worp H, van Ark M, Zwerver J, van den Akker-Scheek I (2012) Risk factors for patellar tendinopathy in basketball and volleyball players: a cross-sectional study. Scand J Med Sci Sports 22:783–790CrossRef
17.
go back to reference Zwerver J, Kramer T, van den Akker-Scheek I (2009) Validity and reliability of the Dutch translation of the VISA-P questionnaire for patellar tendinopathy. BMC Musculoskelet Disord 10:102CrossRef Zwerver J, Kramer T, van den Akker-Scheek I (2009) Validity and reliability of the Dutch translation of the VISA-P questionnaire for patellar tendinopathy. BMC Musculoskelet Disord 10:102CrossRef
18.
go back to reference Zwerver J, Hartgens F, Verhagen E, van der Worp H, van den Akker-Scheek I, Diercks RL (2011) No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial. Am J Sports Med 39:1191–1199 Zwerver J, Hartgens F, Verhagen E, van der Worp H, van den Akker-Scheek I, Diercks RL (2011) No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial. Am J Sports Med 39:1191–1199
19.
go back to reference Cook JL, Khan KM, Kiss ZS, Purdam C, Griffiths L (2001) Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. Victorian Institute of Sport tendon study group. Br J Sports Med 35:65–69 Cook JL, Khan KM, Kiss ZS, Purdam C, Griffiths L (2001) Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. Victorian Institute of Sport tendon study group. Br J Sports Med 35:65–69
20.
go back to reference Fredericson M, Yoon K (2006) Physical examination and patellofemoral pain syndrome. Am J Phys Med Rehabil 85:234–243CrossRef Fredericson M, Yoon K (2006) Physical examination and patellofemoral pain syndrome. Am J Phys Med Rehabil 85:234–243CrossRef
21.
go back to reference Kulig K, Landel R, Chang Y-J et al (2013) Patellar tendon morphology in volleyball athletes with and without patellar tendinopathy. Scand J Med Sci Sports 23:e81–e88CrossRef Kulig K, Landel R, Chang Y-J et al (2013) Patellar tendon morphology in volleyball athletes with and without patellar tendinopathy. Scand J Med Sci Sports 23:e81–e88CrossRef
22.
go back to reference Barber-Westin SD, Noyes FR (1999) Assessment of sports participation levels following knee injuries. Sports Med 28:1–10CrossRef Barber-Westin SD, Noyes FR (1999) Assessment of sports participation levels following knee injuries. Sports Med 28:1–10CrossRef
23.
go back to reference Taş S, Yılmaz S, Onur MR, Soylu AR, Altuntaş O, Korkusuz F (2017) Patellar tendon mechanical properties change with gender, body mass index and quadriceps femoris muscle strength. Acta Orthop Traumatol Turc 51:54–59 Taş S, Yılmaz S, Onur MR, Soylu AR, Altuntaş O, Korkusuz F (2017) Patellar tendon mechanical properties change with gender, body mass index and quadriceps femoris muscle strength. Acta Orthop Traumatol Turc 51:54–59
24.
go back to reference Hsiao M-Y, Chen Y-C, Lin C-Y, Chen W-S, Wang T-G (2015) Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol 41:2899–2905 Hsiao M-Y, Chen Y-C, Lin C-Y, Chen W-S, Wang T-G (2015) Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol 41:2899–2905
25.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
26.
go back to reference Hyslop NP, White WH (2009) Estimating precision using duplicate measurements. J Air Waste Manag Assoc 59:1032–1039CrossRef Hyslop NP, White WH (2009) Estimating precision using duplicate measurements. J Air Waste Manag Assoc 59:1032–1039CrossRef
27.
go back to reference Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P (2013) The case for using the repeatability coefficient when calculating test-retest reliability. PLoS One 8:e73990 Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P (2013) The case for using the repeatability coefficient when calculating test-retest reliability. PLoS One 8:e73990
28.
go back to reference Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163CrossRef
29.
go back to reference Haut TL, Haut RC (1997) The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J Biomech 30:79–81CrossRef Haut TL, Haut RC (1997) The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J Biomech 30:79–81CrossRef
30.
31.
go back to reference Coombes BK, Tucker K, Vicenzino B et al (2018) Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports 28:1201–1208CrossRef Coombes BK, Tucker K, Vicenzino B et al (2018) Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports 28:1201–1208CrossRef
32.
go back to reference Ooi CC, Richards PJ, Maffulli N et al (2016) A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport 19:373–378CrossRef Ooi CC, Richards PJ, Maffulli N et al (2016) A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport 19:373–378CrossRef
33.
go back to reference Dirrichs T, Quack V, Gatz M, Tingart MK, Kuhl CK, Schrading S (2016) Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol 23:1204–1213 Dirrichs T, Quack V, Gatz M, Tingart MK, Kuhl CK, Schrading S (2016) Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol 23:1204–1213
34.
go back to reference Coombes BK, Ziegenfuss B, David M et al (2018) Heterogeneity of passive elastic properties within the quadriceps femoris muscle-tendon unit. Eur J Appl Physiol 118:213–221CrossRef Coombes BK, Ziegenfuss B, David M et al (2018) Heterogeneity of passive elastic properties within the quadriceps femoris muscle-tendon unit. Eur J Appl Physiol 118:213–221CrossRef
35.
go back to reference Hardy A, Rodaix C, Vergari C, Vialle R (2017) Normal range of patellar tendon elasticity using the sharewave elastography technique: an in vivo study in normal volunteers. Surg Technol Int 31:227–230PubMed Hardy A, Rodaix C, Vergari C, Vialle R (2017) Normal range of patellar tendon elasticity using the sharewave elastography technique: an in vivo study in normal volunteers. Surg Technol Int 31:227–230PubMed
36.
go back to reference Berko NS, Mehta AK, Levin TL, Schulz JF (2015) Effect of knee position on the ultrasound elastography appearance of the patellar tendon. Clin Radiol 70:1083–1086CrossRef Berko NS, Mehta AK, Levin TL, Schulz JF (2015) Effect of knee position on the ultrasound elastography appearance of the patellar tendon. Clin Radiol 70:1083–1086CrossRef
37.
go back to reference Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27:393–408 Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27:393–408
38.
go back to reference de Mos M, van El B, DeGroot J et al (2007) Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 35:1549–1556 de Mos M, van El B, DeGroot J et al (2007) Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 35:1549–1556
39.
go back to reference Shin HJ, Kim M-J, Kim HY, Roh YH, Lee M-J (2016) Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol 26:3361–3367 Shin HJ, Kim M-J, Kim HY, Roh YH, Lee M-J (2016) Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol 26:3361–3367
40.
go back to reference Taş S, Onur MR, Yılmaz S, Soylu AR, Korkusuz F (2017) Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon. J Ultrasound Med 36:565–570 Taş S, Onur MR, Yılmaz S, Soylu AR, Korkusuz F (2017) Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon. J Ultrasound Med 36:565–570
Metadata
Title
The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy—a case-control study
Authors
Stephan J. Breda
Arco van der Vlist
Robert-Jan de Vos
Gabriel P. Krestin
Edwin H. G. Oei
Publication date
01-11-2020
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2020
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-06952-0

Other articles of this Issue 11/2020

European Radiology 11/2020 Go to the issue