Skip to main content
Top
Published in: European Radiology 10/2019

Open Access 01-10-2019 | Neuro

Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes

Authors: Lorna A. Smith, Andrew Melbourne, David Owen, M. Jorge Cardoso, Carole H. Sudre, Therese Tillin, Magdalena Sokolska, David Atkinson, Nish Chaturvedi, Sebastien Ourselin, Alun D. Hughes, Frederik Barkhof, H. R. Jäger

Published in: European Radiology | Issue 10/2019

Login to get access

Abstract

Objectives

Cerebral blood flow (CBF) estimates from arterial spin labelling (ASL) show unexplained variability in older populations. We studied the impact of variation of haematocrit (Hct) on CBF estimates in a tri-ethnic elderly population.

Materials and methods

Approval for the study was obtained from the Fulham Research Ethics Committee and participants gave written informed consent. Pseudo-continuous arterial spin labelling was performed on 493 subjects (age 55–90) from a tri-ethnic community-based cohort recruited in London. CBF was estimated using a simplified Buxton equation, with and without correction for Hct measured from blood samples. Differences in perfusion were compared, stratified by sex, ethnicity and diabetes. Results of Student’s t tests were reported with effect size.

Results

Hct adjustment decreased CBF estimates in all categories except white European men. The decrease for women was 2.7 (3.0, 2.4) mL/100 g/min) (mean (95% confidence interval (CI)), p < 0.001 d = 0.38. The effect size differed by ethnicity with estimated mean perfusion in South Asian and African Caribbean women found to be lower by 3.0 (3.6, 2.5) mL/100 g/min, p < 0.001 d = 0.56 and 3.1 (3.6, 2.5) mL/100 g/min), p < 0.001 d = 0.48, respectively. Estimates of perfusion in subjects with diabetes decreased by 1.8 (2.3, 1.4) mL/100 g/min, p < 0.001 d = 0.23) following Hct correction. Correction for individual Hct altered sample frequency distributions of CBF values, especially in women of non-European ethnicity.

Conclusion

ASL-derived CBF values in women, non-European ethnicities and individuals with diabetes are overestimated if calculations are not appropriately adjusted for individual Hct.

Key Points

CBF quantification from ASL using a fixed Hct of 43.5%, as recommended in the ISMRM white paper, may lead to erroneous CBF estimations particularly in non-European and female subjects.
Individually measured Hct values improve the accuracy of CBF estimation and, if these are not available, an adjusted value according to gender, ethnicity or diabetes status should be considered.
Hct-corrected ASL could be potentially important for CBF threshold decision making in the fields of neurodegenerative disease and neuro-oncology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Haller S, Zaharchuk G, Thomas DL et al (2016) Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 281:337–356CrossRefPubMed Haller S, Zaharchuk G, Thomas DL et al (2016) Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 281:337–356CrossRefPubMed
2.
go back to reference Bastos-Leite AJ, Kuijer JP, Rombouts SA et al (2008) Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol 29:1296–1301CrossRefPubMedPubMedCentral Bastos-Leite AJ, Kuijer JP, Rombouts SA et al (2008) Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol 29:1296–1301CrossRefPubMedPubMedCentral
3.
go back to reference Leeuwis AE, Benedictus MR, Kuijer JP et al (2016) Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimers Dement 13(5):531–540CrossRefPubMed Leeuwis AE, Benedictus MR, Kuijer JP et al (2016) Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimers Dement 13(5):531–540CrossRefPubMed
4.
go back to reference Schuff N, Matsumoto S, Kmiecik J et al (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 5:454–462CrossRefPubMedPubMedCentral Schuff N, Matsumoto S, Kmiecik J et al (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 5:454–462CrossRefPubMedPubMedCentral
5.
go back to reference Benedictus MR, Leeuwis AE, Binnewijzend MA et al (2017) Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur Radiol 27:1169–1175CrossRefPubMed Benedictus MR, Leeuwis AE, Binnewijzend MA et al (2017) Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur Radiol 27:1169–1175CrossRefPubMed
6.
go back to reference Binnewijzend MA, Benedictus MR, Kuijer JP et al (2016) Cerebral perfusion in the predementia stages of Alzheimer’s disease. Eur Radiol 26:506–514CrossRefPubMed Binnewijzend MA, Benedictus MR, Kuijer JP et al (2016) Cerebral perfusion in the predementia stages of Alzheimer’s disease. Eur Radiol 26:506–514CrossRefPubMed
7.
go back to reference Binnewijzend MA, Kuijer JP, Benedictus MR et al (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230CrossRefPubMed Binnewijzend MA, Kuijer JP, Benedictus MR et al (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230CrossRefPubMed
8.
go back to reference Binnewijzend MA, Kuijer JP, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333CrossRefPubMed Binnewijzend MA, Kuijer JP, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333CrossRefPubMed
9.
go back to reference Henriksen OM, Kruuse C, Olesen J et al (2013) Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements. J Cereb Blood Flow Metab 33:787–792CrossRefPubMedPubMedCentral Henriksen OM, Kruuse C, Olesen J et al (2013) Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements. J Cereb Blood Flow Metab 33:787–792CrossRefPubMedPubMedCentral
10.
go back to reference Clement P, Mutsaerts H-J, Václavů L et al (2018) Variability of physiological brain perfusion in healthy subjects–a systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab 38:1418–1437CrossRefPubMed Clement P, Mutsaerts H-J, Václavů L et al (2018) Variability of physiological brain perfusion in healthy subjects–a systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab 38:1418–1437CrossRefPubMed
11.
go back to reference Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116CrossRefPubMed Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116CrossRefPubMed
12.
13.
go back to reference Lu H, Clingman C, Golay X et al (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682CrossRefPubMed Lu H, Clingman C, Golay X et al (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682CrossRefPubMed
14.
go back to reference de Simone G, Devereux RB, Chien S et al (1990) Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 81:107–117CrossRefPubMed de Simone G, Devereux RB, Chien S et al (1990) Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 81:107–117CrossRefPubMed
15.
go back to reference Cheng CK-W, Chan J, Cembrowski GS et al (2004) Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol 10:42–53CrossRefPubMed Cheng CK-W, Chan J, Cembrowski GS et al (2004) Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol 10:42–53CrossRefPubMed
16.
go back to reference Lim E, Miyamura J, Chen JJ (2015) Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawai’i J Med Public Health 74:302 Lim E, Miyamura J, Chen JJ (2015) Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawai’i J Med Public Health 74:302
17.
go back to reference McDonough J, Garrison G, Hames C (1964) Blood pressure and hypertensive disease among negroes and whites: a study in Evans County, Georgia. Ann Intern Med 61:208–228CrossRefPubMed McDonough J, Garrison G, Hames C (1964) Blood pressure and hypertensive disease among negroes and whites: a study in Evans County, Georgia. Ann Intern Med 61:208–228CrossRefPubMed
18.
go back to reference Tamariz LJ, Young JH, Pankow JS et al (2008) Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 168:1153–1160CrossRefPubMedPubMedCentral Tamariz LJ, Young JH, Pankow JS et al (2008) Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 168:1153–1160CrossRefPubMedPubMedCentral
19.
go back to reference Vlagopoulos PT, Tighiouart H, Weiner DE et al (2005) Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol 16:3403–3410CrossRefPubMed Vlagopoulos PT, Tighiouart H, Weiner DE et al (2005) Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol 16:3403–3410CrossRefPubMed
20.
go back to reference de Jager J, Kooy A, Lehert P et al (2010) Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 340:c2181CrossRefPubMedPubMedCentral de Jager J, Kooy A, Lehert P et al (2010) Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 340:c2181CrossRefPubMedPubMedCentral
21.
go back to reference Tillin T, Forouhi NG, McKeigue PM et al (2012) Southall And Brent REvisited: cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. Int J Epidemiol 41:33–42CrossRefPubMed Tillin T, Forouhi NG, McKeigue PM et al (2012) Southall And Brent REvisited: cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and diabetes in people of European, Indian Asian and African Caribbean origins. Int J Epidemiol 41:33–42CrossRefPubMed
22.
go back to reference World Health Organisation (1999) Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus World Health Organisation (1999) Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus
23.
go back to reference Cardoso MJ, Modat M, Wolz R et al (2015) Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans Med Imaging 34:1976–1988CrossRefPubMed Cardoso MJ, Modat M, Wolz R et al (2015) Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans Med Imaging 34:1976–1988CrossRefPubMed
24.
go back to reference Melbourne A, Toussaint N, Owen D et al (2016) NiftyFit: a software package for multi-parametric model-fitting of 4D magnetic resonance imaging data. Neuroinformatics 14:319–337CrossRefPubMedPubMedCentral Melbourne A, Toussaint N, Owen D et al (2016) NiftyFit: a software package for multi-parametric model-fitting of 4D magnetic resonance imaging data. Neuroinformatics 14:319–337CrossRefPubMedPubMedCentral
25.
go back to reference Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60:1362–1371CrossRefPubMed Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60:1362–1371CrossRefPubMed
26.
go back to reference Vaclavu L, van der Land V, Heijtel DF et al (2016) In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI. AJNR Am J Neuroradiol 37:1727–1732CrossRefPubMedPubMedCentral Vaclavu L, van der Land V, Heijtel DF et al (2016) In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI. AJNR Am J Neuroradiol 37:1727–1732CrossRefPubMedPubMedCentral
27.
go back to reference De Vis JB, Hendrikse J, Groenendaal F et al (2014) Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI. Neuroimage Clin 4:517–525CrossRefPubMedPubMedCentral De Vis JB, Hendrikse J, Groenendaal F et al (2014) Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI. Neuroimage Clin 4:517–525CrossRefPubMedPubMedCentral
28.
go back to reference Parkes LM, Rashid W, Chard DT et al (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743CrossRefPubMed Parkes LM, Rashid W, Chard DT et al (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743CrossRefPubMed
29.
go back to reference Aanerud J, Borghammer P, Rodell A et al (2017) Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 37:2433–2440CrossRefPubMed Aanerud J, Borghammer P, Rodell A et al (2017) Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 37:2433–2440CrossRefPubMed
30.
go back to reference Baxter LR, Mazziotta JC, Phelps ME et al (1987) Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 21:237–245CrossRefPubMed Baxter LR, Mazziotta JC, Phelps ME et al (1987) Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 21:237–245CrossRefPubMed
31.
go back to reference Ibaraki M, Shinohara Y, Nakamura K et al (2010) Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans. J Cereb Blood Flow Metab 30:1296–1305CrossRefPubMedPubMedCentral Ibaraki M, Shinohara Y, Nakamura K et al (2010) Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans. J Cereb Blood Flow Metab 30:1296–1305CrossRefPubMedPubMedCentral
32.
go back to reference Ostergaard L, Engedal TS, Moreton F et al (2016) Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 36:302–325CrossRefPubMed Ostergaard L, Engedal TS, Moreton F et al (2016) Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 36:302–325CrossRefPubMed
33.
go back to reference Grotta J, Ackerman R, Correia J et al (1982) Whole blood viscosity parameters and cerebral blood flow. Stroke 13:296–301CrossRefPubMed Grotta J, Ackerman R, Correia J et al (1982) Whole blood viscosity parameters and cerebral blood flow. Stroke 13:296–301CrossRefPubMed
34.
go back to reference Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55:468–478CrossRefPubMed Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55:468–478CrossRefPubMed
35.
go back to reference Dolui S, Vidorreta M, Wang Z et al (2017) Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment. Hum Brain Mapp 38:5260–5273CrossRefPubMedPubMedCentral Dolui S, Vidorreta M, Wang Z et al (2017) Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment. Hum Brain Mapp 38:5260–5273CrossRefPubMedPubMedCentral
36.
go back to reference Rosmini S, Bulluck H, Treibel TA et al (2016) Hematocrit, iron and HDL-cholesterol explain 90% of variation in native blood T1. J Cardiovasc Magn Reson 18:O86CrossRefPubMedCentral Rosmini S, Bulluck H, Treibel TA et al (2016) Hematocrit, iron and HDL-cholesterol explain 90% of variation in native blood T1. J Cardiovasc Magn Reson 18:O86CrossRefPubMedCentral
37.
go back to reference Mokken FC, van der Waart FJ, Henny CP et al (1996) Differences in peripheral arterial and venous hemorheologic parameters. Ann Hematol 73:135–137CrossRefPubMed Mokken FC, van der Waart FJ, Henny CP et al (1996) Differences in peripheral arterial and venous hemorheologic parameters. Ann Hematol 73:135–137CrossRefPubMed
38.
go back to reference Treibel TA, Fontana M, Maestrini V et al (2016) Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging 9:54–63CrossRefPubMed Treibel TA, Fontana M, Maestrini V et al (2016) Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging 9:54–63CrossRefPubMed
39.
go back to reference Li W, Liu P, Lu H et al (2017) Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility. Magn Reson Med 77:2296–2302CrossRefPubMed Li W, Liu P, Lu H et al (2017) Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility. Magn Reson Med 77:2296–2302CrossRefPubMed
Metadata
Title
Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes
Authors
Lorna A. Smith
Andrew Melbourne
David Owen
M. Jorge Cardoso
Carole H. Sudre
Therese Tillin
Magdalena Sokolska
David Atkinson
Nish Chaturvedi
Sebastien Ourselin
Alun D. Hughes
Frederik Barkhof
H. R. Jäger
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06096-w

Other articles of this Issue 10/2019

European Radiology 10/2019 Go to the issue