Skip to main content
Top
Published in: European Radiology 9/2019

Open Access 01-09-2019 | Osteoporosis | Musculoskeletal

Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA

Authors: Maximilian T. Löffler, Alina Jacob, Alexander Valentinitsch, Anna Rienmüller, Claus Zimmer, Yu-Mi Ryang, Thomas Baum, Jan S. Kirschke

Published in: European Radiology | Issue 9/2019

Login to get access

Abstract

Objectives

To compare opportunistic quantitative CT (QCT) with dual energy X-ray absorptiometry (DXA) in their ability to predict incident vertebral fractures.

Methods

We included 84 patients aged 50 years and older, who had routine CT including the lumbar spine and DXA within a 12-month period (baseline) as well as follow-up imaging after at least 12 months or who sustained an incident vertebral fracture documented earlier. Patients with bone disorders aside from osteoporosis were excluded. Fracture status and trabecular bone mineral density (BMD) were retrospectively evaluated in baseline CT and fracture status was reassessed at follow-up. BMDQCT was assessed by opportunistic QCT with asynchronous calibration of multiple MDCT scanners.

Results

Sixteen patients had incident vertebral fractures showing lower mean BMDQCT than patients without fracture (p = 0.001). For the risk of incident vertebral fractures, the hazard ratio increased per SD in BMDQCT (4.07; 95% CI, 1.98–8.38), as well as after adjusting for age, sex, and prevalent fractures (2.54; 95% CI, 1.09–5.90). For DXA, a statistically significant increase in relative hazard per SD decrease in T-score was only observed after age and sex adjustment (1.57; 95% CI, 1.04–2.38). The predictability of incident vertebral fractures was good by BMDQCT (AUC = 0.76; 95% CI, 0.64–0.89) and non-significant by T-scores. Asynchronously calibrated CT scanners showed good long-term stability (linear drift ranging from − 0.55 to − 2.29 HU per year).

Conclusions

Opportunistic screening of mainly neurosurgical and oncologic patients in CT performed for indications other than densitometry allows for better risk assessment of imminent vertebral fractures than dedicated DXA.

Key Points

• Opportunistic QCT predicts osteoporotic vertebral fractures better than DXA reference standard in mainly neurosurgical and oncologic patients.
• More than every second patient (56%) with an incident vertebral fracture was misdiagnosed not having osteoporosis according to DXA.
• Standard ACR QCT-cutoff values for osteoporosis (< 80 mg/cm 3 ) and osteopenia (≤ 120 mg/cm 3 ) can also be applied scanner independently in calibrated opportunistic QCT.
Literature
8.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795
10.
go back to reference Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381CrossRefPubMed Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381CrossRefPubMed
11.
go back to reference Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202 Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202
16.
go back to reference Lafferty FW, Rowland DY (1996) Correlations of dual-energy X-ray absorptiometry, quantitative computed tomography, and single photon absorptiometry with spinal and non-spinal fractures. Osteoporos Int 6:407–415CrossRefPubMed Lafferty FW, Rowland DY (1996) Correlations of dual-energy X-ray absorptiometry, quantitative computed tomography, and single photon absorptiometry with spinal and non-spinal fractures. Osteoporos Int 6:407–415CrossRefPubMed
17.
go back to reference Rehman Q, Lang T, Modin G, Lane NE (2002) Quantitative computed tomography of the lumbar spine, not dual x-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthritis Rheum 46:1292–1297. https://doi.org/10.1002/art.10277 CrossRefPubMed Rehman Q, Lang T, Modin G, Lane NE (2002) Quantitative computed tomography of the lumbar spine, not dual x-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthritis Rheum 46:1292–1297. https://​doi.​org/​10.​1002/​art.​10277 CrossRefPubMed
18.
go back to reference Yu W, Glüer CC, Grampp S et al (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439CrossRefPubMed Yu W, Glüer CC, Grampp S et al (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439CrossRefPubMed
19.
30.
go back to reference Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270 Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270
32.
go back to reference Ito M, Hayashi K, Ishida Y et al (1997) Discrimination of spinal fracture with various bone mineral measurements. Calcif Tissue Int 60:11–15CrossRefPubMed Ito M, Hayashi K, Ishida Y et al (1997) Discrimination of spinal fracture with various bone mineral measurements. Calcif Tissue Int 60:11–15CrossRefPubMed
38.
go back to reference Yu W, Glüer CC, Fuerst T et al (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57:169–174CrossRefPubMed Yu W, Glüer CC, Fuerst T et al (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57:169–174CrossRefPubMed
48.
go back to reference Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ (2016) Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int 27:1131–1136. https://doi.org/10.1007/s00198-015-3318-4 Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ (2016) Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int 27:1131–1136. https://​doi.​org/​10.​1007/​s00198-015-3318-4
Metadata
Title
Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA
Authors
Maximilian T. Löffler
Alina Jacob
Alexander Valentinitsch
Anna Rienmüller
Claus Zimmer
Yu-Mi Ryang
Thomas Baum
Jan S. Kirschke
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06018-w

Other articles of this Issue 9/2019

European Radiology 9/2019 Go to the issue