Skip to main content
Top
Published in: European Radiology 5/2019

01-05-2019 | Contrast Media

Gadolinium-enhanced imaging of pediatric thoracic lymphoma: is intravenous contrast really necessary?

Authors: Christophe T. Arendt, Martin Beeres, Doris Leithner, Patricia Tischendorf, Marcel Langenbach, Benjamin Kaltenbach, Jasmin Dalgicdir, Thomas J. Vogl, Tatjana Gruber-Rouh

Published in: European Radiology | Issue 5/2019

Login to get access

Abstract

Objectives

Increasing awareness of potential side effects from gadolinium-based contrast agents has underlined the need for contrast-free magnetic resonance imaging (MRI). Numerous recent articles evaluated the risk of potential brain deposits, with the result that research is putting the focus more on alternative unenhanced imaging techniques. The aim of this study was to determine the need for contrast media for chest MRI in primary staging and follow-up care of lymphoma.

Methods

This monocentric, retrospective study encompassed patients under 25 years of age who had undergone histopathological examination of thoracic lymph nodes and at least one chest MRI examination with unenhanced and contrast-enhanced sequences. Seven different thoracic lymph node stations including mediastinal, hilar, periclavicular, and axillary regions were evaluated by two readers regarding lesion diameter, number, shape, necrosis, and infiltration of surrounding structures. Findings were categorized into suspicious (> 1 cm; round; necrosis; infiltration) or non-suspicious.

Results

Fifty-one patients (mean age, 16.0 ± 3.7 yrs) with thoracic Hodgkin (70.6%) and non-Hodgkin lymphoma (25.5%) and lymphadenopathy (3.9%) were retrospectively included. Most lymph nodes categorized as suspicious were located in the mediastinal station (86.4%). High agreement (κ = 0.81) between unenhanced and contrast-enhanced sequences was found for both suspicious and non-suspicious lymph nodes. Significant (p < 0.001), but small difference (1 mm) was observed only in sizing mediastinal lymph nodes (all other p > 0.05). No significant difference (smallest p = 0.08) was shown for the use of five different types of contrast media.

Conclusion

MRI in young patients with thoracic lymphoma can safely be done without the use of contrast agent.

Key Point

• Thoracic magnetic resonance imaging in young lymphoma patients can safely be done without gadolinium-based contrast agents.
Literature
2.
go back to reference Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068CrossRefPubMedPubMedCentral Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068CrossRefPubMedPubMedCentral
3.
go back to reference Johnson SA, Kumar A, Matasar MJ, Schöder H, Rademaker J (2015) Imaging for staging and response assessment in lymphoma. Radiology 276:323–338CrossRefPubMed Johnson SA, Kumar A, Matasar MJ, Schöder H, Rademaker J (2015) Imaging for staging and response assessment in lymphoma. Radiology 276:323–338CrossRefPubMed
4.
go back to reference Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174CrossRefPubMed Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174CrossRefPubMed
6.
go back to reference Punwani S, Taylor SA, Bainbridge A et al (2010) Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 255:182–190CrossRefPubMed Punwani S, Taylor SA, Bainbridge A et al (2010) Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 255:182–190CrossRefPubMed
7.
go back to reference Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol 44:683–690CrossRefPubMed Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol 44:683–690CrossRefPubMed
8.
go back to reference Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165CrossRefPubMed Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165CrossRefPubMed
10.
go back to reference Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed
11.
go back to reference Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMed
12.
go back to reference Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMed Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMed
13.
go back to reference Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed
14.
go back to reference Radbruch A, Haase R, Kickingereder P et al (2017) Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology 283:828–836CrossRefPubMed Radbruch A, Haase R, Kickingereder P et al (2017) Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology 283:828–836CrossRefPubMed
15.
go back to reference Bae S, Lee HJ, Han K et al (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol 27:3353–3361CrossRefPubMed Bae S, Lee HJ, Han K et al (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol 27:3353–3361CrossRefPubMed
16.
go back to reference Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed
17.
go back to reference Mithal LB, Patel PS, Mithal D, Palac HL, Rozenfeld MN (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664CrossRefPubMed Mithal LB, Patel PS, Mithal D, Palac HL, Rozenfeld MN (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664CrossRefPubMed
18.
go back to reference Kumar A, Burger IA, Zhang Z et al (2016) Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: prognostic significance of measurements in the coronal and transverse planes. Haematologica 101:1237–1243CrossRefPubMedPubMedCentral Kumar A, Burger IA, Zhang Z et al (2016) Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: prognostic significance of measurements in the coronal and transverse planes. Haematologica 101:1237–1243CrossRefPubMedPubMedCentral
19.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed
20.
go back to reference Mayerhoefer ME, Karanikas G, Kletter K et al (2015) Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 21:2506–2513CrossRefPubMed Mayerhoefer ME, Karanikas G, Kletter K et al (2015) Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 21:2506–2513CrossRefPubMed
21.
go back to reference Giraudo C, Raderer M, Karanikas G et al (2016) 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol 51:163–169CrossRefPubMedPubMedCentral Giraudo C, Raderer M, Karanikas G et al (2016) 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol 51:163–169CrossRefPubMedPubMedCentral
22.
go back to reference Carter BW, Wu CC, Khorashadi L et al (2014) Multimodality imaging of cardiothoracic lymphoma. Eur J Radiol 83:1470–1482CrossRefPubMed Carter BW, Wu CC, Khorashadi L et al (2014) Multimodality imaging of cardiothoracic lymphoma. Eur J Radiol 83:1470–1482CrossRefPubMed
24.
go back to reference Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770–780CrossRefPubMed Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770–780CrossRefPubMed
26.
go back to reference Henzler T, Schmid-Bindert G, Schoenberg SO, Fink C (2010) Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol 76:329–336CrossRefPubMed Henzler T, Schmid-Bindert G, Schoenberg SO, Fink C (2010) Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol 76:329–336CrossRefPubMed
Metadata
Title
Gadolinium-enhanced imaging of pediatric thoracic lymphoma: is intravenous contrast really necessary?
Authors
Christophe T. Arendt
Martin Beeres
Doris Leithner
Patricia Tischendorf
Marcel Langenbach
Benjamin Kaltenbach
Jasmin Dalgicdir
Thomas J. Vogl
Tatjana Gruber-Rouh
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5859-3

Other articles of this Issue 5/2019

European Radiology 5/2019 Go to the issue