Skip to main content
Top
Published in: European Radiology 9/2018

01-09-2018 | Oncology

In vivo study of enhanced chemotherapy combined with ultrasound image-guided focused ultrasound (USgFUS) treatment for pancreatic cancer in a xenograft mouse model

Authors: Eun-Joo Park, Yun Deok Ahn, Jae Young Lee

Published in: European Radiology | Issue 9/2018

Login to get access

Abstract

Objectives

This study was designed to investigate whether focused ultrasound (FUS) treatment with a higher mechanical index (MI) can enhance the effects of combined chemotherapy more than with a lower MI, and to evaluate the feasibility of the chemotherapy combined with FUS at a higher MI as an alternative treatment protocol.

Methods

Mice in the first study were divided into six groups: control, chemotherapy only (GEM), two groups treated with FUS only at two different MIs, and two groups treated with chemotherapy and FUS (GEM + FUS). Mice were treated with a single-session treatment; one session consisted of three weekly treatments and 1 week of follow-up monitoring. In the second study, mice were assigned to two groups (GEM, GEM + FUS) and treated with four treatment sessions.

Results

In the single-session treatment, tumor growth was most effectively suppressed in GEM + FUS group with a higher MI. Tumor growth rate was significantly lower in GEM + FUS group than in GEM group for multiple-session treatment. Specifically, three of ten mice in GEM + FUS group showed complete remission.

Conclusions

This study demonstrated that FUS at a higher MI can enhance chemotherapy outcomes more than at a lower MI and demonstrated the potential of FUS in combination with chemotherapy as a new cancer treatment protocol.

Key points

• Combined treatment of chemotherapy and focused ultrasound can effectively suppress tumor growth.
• For the focused ultrasound treatment conditions used in this study, focused ultrasound with relatively higher mechanical index shows more enhanced therapeutic outcomes than with the lower mechanical index.
• Combination therapy shows the possibility as a new cancer treatment protocol.
Literature
2.
go back to reference Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide. IARC CancerBase Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide. IARC CancerBase
5.
go back to reference Amrutkar M, Gladhaug IP (2017) Pancreatic cancer chemoresistance to gemcitabine. Cancers 9:–157 Amrutkar M, Gladhaug IP (2017) Pancreatic cancer chemoresistance to gemcitabine. Cancers 9:–157
6.
go back to reference de Senneville BD, Moonen C, Ries M (2016) MRI-guided HIFU methods for the ablation of liver and renal cancers. Adv Exp Med Biol 880:43–63CrossRefPubMed de Senneville BD, Moonen C, Ries M (2016) MRI-guided HIFU methods for the ablation of liver and renal cancers. Adv Exp Med Biol 880:43–63CrossRefPubMed
7.
go back to reference Peek MC, Ahmed M, Scudder J, Baker R, Pinder SE, Douek M (2016) High intensity focused ultrasound in the treatment of breast fibroadenomata: results of the HIFU-F trial. Int J Hyperthermia 32:881–888CrossRefPubMed Peek MC, Ahmed M, Scudder J, Baker R, Pinder SE, Douek M (2016) High intensity focused ultrasound in the treatment of breast fibroadenomata: results of the HIFU-F trial. Int J Hyperthermia 32:881–888CrossRefPubMed
8.
go back to reference Quinn SD, Gedroyc WM (2015) Thermal ablative treatment of uterine fibroids. Int J Hyperthermia 31:272–279CrossRefPubMed Quinn SD, Gedroyc WM (2015) Thermal ablative treatment of uterine fibroids. Int J Hyperthermia 31:272–279CrossRefPubMed
9.
go back to reference Zhao WP, Han ZY, Zhang J, Yu XL, Cheng ZG, Zhou X et al (2016) Early experience: high-intensity focused ultrasound treatment for intra-abdominal aggressive fibromatosis of failure in surgery. Br J Radiol 89:20151026CrossRefPubMedPubMedCentral Zhao WP, Han ZY, Zhang J, Yu XL, Cheng ZG, Zhou X et al (2016) Early experience: high-intensity focused ultrasound treatment for intra-abdominal aggressive fibromatosis of failure in surgery. Br J Radiol 89:20151026CrossRefPubMedPubMedCentral
10.
go back to reference Hersh DS, Kim AJ, Winkles JA, Eisenberg HM, Woodworth GF, Frenkel V (2016) Emerging applications of therapeutic ultrasound in neuro-oncology: moving beyond tumor ablation. Neurosurgery 79:643–654CrossRefPubMedPubMedCentral Hersh DS, Kim AJ, Winkles JA, Eisenberg HM, Woodworth GF, Frenkel V (2016) Emerging applications of therapeutic ultrasound in neuro-oncology: moving beyond tumor ablation. Neurosurgery 79:643–654CrossRefPubMedPubMedCentral
11.
go back to reference Lin Q, Mao KL, Tian FR, Yang JJ, Chen PP, Xu J et al (2016) Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol 77:269–280CrossRefPubMed Lin Q, Mao KL, Tian FR, Yang JJ, Chen PP, Xu J et al (2016) Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol 77:269–280CrossRefPubMed
12.
go back to reference Park EJ, Zhang YZ, Vykhodtseva N, McDannold N (2012) Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163:277-284 Park EJ, Zhang YZ, Vykhodtseva N, McDannold N (2012) Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163:277-284
13.
go back to reference Dalecki D (2004) Mechanical bioeffects of ultrasound. Ann Rev Biomed Eng 6:229-248 Dalecki D (2004) Mechanical bioeffects of ultrasound. Ann Rev Biomed Eng 6:229-248
14.
go back to reference American Institute of Ultrasound in Medicine (2000) Section 6–mechanical bioeffects in the presence of gas-carrier ultrasound contrast agents. J Ultrasound Med 19:54–68 American Institute of Ultrasound in Medicine (2000) Section 6–mechanical bioeffects in the presence of gas-carrier ultrasound contrast agents. J Ultrasound Med 19:54–68
15.
go back to reference American Institute of Ultrasound in Medicine (2000) Section 5–nonthermal bioeffects in the absence of well-defined gas bodies. J Ultrasound Med 19, 54-68 American Institute of Ultrasound in Medicine (2000) Section 5–nonthermal bioeffects in the absence of well-defined gas bodies. J Ultrasound Med 19, 54-68
16.
go back to reference Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31:623–634CrossRefPubMedPubMedCentral Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31:623–634CrossRefPubMedPubMedCentral
17.
18.
go back to reference Humphrey VF (2007) Ultrasound and matter–physical interactions. Prog Biophys Mol Biol 93:195–211CrossRefPubMed Humphrey VF (2007) Ultrasound and matter–physical interactions. Prog Biophys Mol Biol 93:195–211CrossRefPubMed
19.
go back to reference Hoogenboom M, Eikelenboom D, den Brok MH, Heerschap A, Futterer JJ, Adema GJ (2015) Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. Ultrasound Med Biol 41:1500–1517CrossRefPubMed Hoogenboom M, Eikelenboom D, den Brok MH, Heerschap A, Futterer JJ, Adema GJ (2015) Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. Ultrasound Med Biol 41:1500–1517CrossRefPubMed
20.
go back to reference Khokhlova VA, Fowlkes JB, Roberts WW, Schade GR, Xu Z, Khokhlova TD et al (2015) Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia 31:145–162CrossRefPubMedPubMedCentral Khokhlova VA, Fowlkes JB, Roberts WW, Schade GR, Xu Z, Khokhlova TD et al (2015) Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia 31:145–162CrossRefPubMedPubMedCentral
21.
go back to reference Cao Y, Gao M, Chen C, Fan A, Zhang J, Kong D et al (2015) Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 26:115101CrossRefPubMed Cao Y, Gao M, Chen C, Fan A, Zhang J, Kong D et al (2015) Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 26:115101CrossRefPubMed
22.
go back to reference Karavelidis V, Bikiaris D, Avgoustakis K (2015) New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J Pharm Pharmacol 67:215–230CrossRefPubMed Karavelidis V, Bikiaris D, Avgoustakis K (2015) New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J Pharm Pharmacol 67:215–230CrossRefPubMed
23.
go back to reference Ta T, Bartolak-Suki E, Park EJ, Karrobi K, McDannold NJ, Porter TM (2014) Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating. J Control Release 194:71-81 Ta T, Bartolak-Suki E, Park EJ, Karrobi K, McDannold NJ, Porter TM (2014) Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating. J Control Release 194:71-81
24.
go back to reference Wang A, Gao H, Sun Y, Sun YL, Yang YW, Wu G et al (2013) Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Int J Pharm 441:30–39CrossRefPubMed Wang A, Gao H, Sun Y, Sun YL, Yang YW, Wu G et al (2013) Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. Int J Pharm 441:30–39CrossRefPubMed
25.
go back to reference Yu D, Li W, Zhang Y, Zhang B (2016) Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed Pharmacother 83:1428–1435CrossRefPubMed Yu D, Li W, Zhang Y, Zhang B (2016) Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed Pharmacother 83:1428–1435CrossRefPubMed
26.
go back to reference Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140CrossRefPubMed Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140CrossRefPubMed
27.
29.
30.
go back to reference Kotopoulis Kotopoulis S, Delalande A, Popa M, Mamaeva V, Dimcevski G, Gilja OH et al (2014) Sonoporation-enhanced chemotherapy significantly reduces primary tumor burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 16:53–62CrossRefPubMed Kotopoulis Kotopoulis S, Delalande A, Popa M, Mamaeva V, Dimcevski G, Gilja OH et al (2014) Sonoporation-enhanced chemotherapy significantly reduces primary tumor burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 16:53–62CrossRefPubMed
31.
go back to reference Yu MH, Lee JY, Kim HR, Kim BR, Park EJ, Kim HS et al (2016) Therapeutic effects of microbubbles added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model. Korean J Radiol 17:779–788CrossRefPubMedPubMedCentral Yu MH, Lee JY, Kim HR, Kim BR, Park EJ, Kim HS et al (2016) Therapeutic effects of microbubbles added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model. Korean J Radiol 17:779–788CrossRefPubMedPubMedCentral
32.
go back to reference Kotopoulis S, Stigen E, Popa M, Safont MM, Healey A, Kvale S et al (2017) Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumor volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J Control Release 245:70–80CrossRefPubMed Kotopoulis S, Stigen E, Popa M, Safont MM, Healey A, Kvale S et al (2017) Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumor volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J Control Release 245:70–80CrossRefPubMed
33.
go back to reference Lee ES, Lee JY, Kim H, Choi Y, Park J, Han JK et al (2013) Pulsed high-intensity focused ultrasound enhances apoptosis of pancreatic cancer xenograft with gemcitabine. Ultrasound Med Biol 39:1991–2000CrossRefPubMed Lee ES, Lee JY, Kim H, Choi Y, Park J, Han JK et al (2013) Pulsed high-intensity focused ultrasound enhances apoptosis of pancreatic cancer xenograft with gemcitabine. Ultrasound Med Biol 39:1991–2000CrossRefPubMed
34.
go back to reference ab Ithel Davies I, Gavrilov LR, Tsirulnikov EM (1996) Application of focused ultrasound for research on pain. Pain 67:17–27CrossRefPubMed ab Ithel Davies I, Gavrilov LR, Tsirulnikov EM (1996) Application of focused ultrasound for research on pain. Pain 67:17–27CrossRefPubMed
35.
go back to reference Yudina A, Moonen C (2012) Ultrasound-induced cell permeabilisation and hyperthermia: strategies for local delivery of compounds with intracellular mode of action. Int J Hyperthermia 28:311–319CrossRefPubMed Yudina A, Moonen C (2012) Ultrasound-induced cell permeabilisation and hyperthermia: strategies for local delivery of compounds with intracellular mode of action. Int J Hyperthermia 28:311–319CrossRefPubMed
36.
go back to reference Park J, Zhang Y, Vykhodtseva N, Akula JD, McDannold NJ (2012) Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles. PloS one 7:e42754CrossRefPubMedPubMedCentral Park J, Zhang Y, Vykhodtseva N, Akula JD, McDannold NJ (2012) Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles. PloS one 7:e42754CrossRefPubMedPubMedCentral
37.
go back to reference Aryal M, Park J, Vykhodtseva N, Zhang YZ, McDannold N (2015) Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model. Phys Med Biol 60:2511–2527CrossRefPubMedPubMedCentral Aryal M, Park J, Vykhodtseva N, Zhang YZ, McDannold N (2015) Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model. Phys Med Biol 60:2511–2527CrossRefPubMedPubMedCentral
38.
go back to reference Okunaga S, Takasu A, Meshii N, Imai T, Hamada M, Iwai S et al (2015) Ultrasound as a method to enhance antitumor ability of oncolytic herpes simplex virus for head and neck cancer. Cancer Gene Ther 22:163–168CrossRefPubMed Okunaga S, Takasu A, Meshii N, Imai T, Hamada M, Iwai S et al (2015) Ultrasound as a method to enhance antitumor ability of oncolytic herpes simplex virus for head and neck cancer. Cancer Gene Ther 22:163–168CrossRefPubMed
39.
go back to reference Qin J, Wang TY, Willmann JK (2016) Sonoporation: applications for cancer therapy. Adv Exp Med Biol 880:263–291CrossRefPubMed Qin J, Wang TY, Willmann JK (2016) Sonoporation: applications for cancer therapy. Adv Exp Med Biol 880:263–291CrossRefPubMed
40.
go back to reference Jin Z, Choi Y, Ko SY, Park JO, Park S (2017) Experimental and simulation studies on focused ultrasound triggered drug delivery. Biotechnol Appl Biochem 64:134–142CrossRefPubMed Jin Z, Choi Y, Ko SY, Park JO, Park S (2017) Experimental and simulation studies on focused ultrasound triggered drug delivery. Biotechnol Appl Biochem 64:134–142CrossRefPubMed
41.
go back to reference Park EJ, Werner J, Smith NB (2007) Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res 24:1396–1401CrossRefPubMed Park EJ, Werner J, Smith NB (2007) Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res 24:1396–1401CrossRefPubMed
42.
go back to reference Chae SY, Kim YS, Park MJ, Yang J, Park H, Namgung MS et al (2014) High-intensity focused ultrasound-induced, localized mild hyperthermia to enhance anti-cancer efficacy of systemic doxorubicin: an experimental study. Ultrasound Med Biol 40:1554–1563CrossRefPubMed Chae SY, Kim YS, Park MJ, Yang J, Park H, Namgung MS et al (2014) High-intensity focused ultrasound-induced, localized mild hyperthermia to enhance anti-cancer efficacy of systemic doxorubicin: an experimental study. Ultrasound Med Biol 40:1554–1563CrossRefPubMed
43.
go back to reference Ventre DM, Koppes AN (2016) The body acoustic: ultrasonic neuromodulation for translational medicine. Cells Tissues Organs 202:23–41CrossRefPubMed Ventre DM, Koppes AN (2016) The body acoustic: ultrasonic neuromodulation for translational medicine. Cells Tissues Organs 202:23–41CrossRefPubMed
44.
go back to reference Cohen-Inbar O, Xu Z, Sheehan JP (2016) Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Ther Ultrasound 4:2CrossRefPubMedPubMedCentral Cohen-Inbar O, Xu Z, Sheehan JP (2016) Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Ther Ultrasound 4:2CrossRefPubMedPubMedCentral
46.
go back to reference Coussios CC, Farny CH, Haar GT, Roy RA (2007) Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia 23:105–120CrossRefPubMed Coussios CC, Farny CH, Haar GT, Roy RA (2007) Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia 23:105–120CrossRefPubMed
47.
go back to reference Kopechek JA, Park EJ, Zhang YZ, Vykhodtseva NI, Mcdannold NJ, Porter TM (2014) Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 59:3465–3481CrossRefPubMedPubMedCentral Kopechek JA, Park EJ, Zhang YZ, Vykhodtseva NI, Mcdannold NJ, Porter TM (2014) Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 59:3465–3481CrossRefPubMedPubMedCentral
48.
go back to reference Lammertink BH, Bos C, van der Wurff-Jacobs KM, Storm G, Moonen CT, Deckers R (2016) Increase of intracellular cisplatin levels and radiosensitization by ultrasound in combination with microbubbles. J Control Release 238:157–165CrossRefPubMed Lammertink BH, Bos C, van der Wurff-Jacobs KM, Storm G, Moonen CT, Deckers R (2016) Increase of intracellular cisplatin levels and radiosensitization by ultrasound in combination with microbubbles. J Control Release 238:157–165CrossRefPubMed
49.
go back to reference Tachibana K, Endo H, Feril LB, Nejad SM, Takahashi H, Narihira K et al (2015) Enhanced mechanical damage to in vitro cancer cells by high-intensity-focused ultrasound in the presence of microbubbles and titanium dioxide. J Med Ultrason (2001) 42:449–455CrossRef Tachibana K, Endo H, Feril LB, Nejad SM, Takahashi H, Narihira K et al (2015) Enhanced mechanical damage to in vitro cancer cells by high-intensity-focused ultrasound in the presence of microbubbles and titanium dioxide. J Med Ultrason (2001) 42:449–455CrossRef
50.
go back to reference Liu HL, Fan CH, Ting CY, Yeh CK (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4:432–444CrossRefPubMedPubMedCentral Liu HL, Fan CH, Ting CY, Yeh CK (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4:432–444CrossRefPubMedPubMedCentral
Metadata
Title
In vivo study of enhanced chemotherapy combined with ultrasound image-guided focused ultrasound (USgFUS) treatment for pancreatic cancer in a xenograft mouse model
Authors
Eun-Joo Park
Yun Deok Ahn
Jae Young Lee
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5355-9

Other articles of this Issue 9/2018

European Radiology 9/2018 Go to the issue