Skip to main content
Top
Published in: European Radiology 9/2018

Open Access 01-09-2018 | Magnetic Resonance

Observer variability of reference tissue selection for relativecerebral blood volume measurements in glioma patients

Authors: Marcel T. H. Oei, Frederick J. A. Meijer, Jan-Jurre Mordang, Ewoud J. Smit, Albert J. S. Idema, Bozena M. Goraj, Hendrik O. A. Laue, Mathias Prokop, Rashindra Manniesing

Published in: European Radiology | Issue 9/2018

Login to get access

Abstract

Objectives

To assess observer variability of different reference tissues used for relative CBV (rCBV) measurements in DSC-MRI of glioma patients.

Methods

In this retrospective study, three observers measured rCBV in DSC-MR images of 44 glioma patients on two occasions. rCBV is calculated by the CBV in the tumour hotspot/the CBV of a reference tissue at the contralateral side for normalization. One observer annotated the tumour hotspot that was kept constant for all measurements. All observers annotated eight reference tissues of normal white and grey matter. Observer variability was evaluated using the intraclass correlation coefficient (ICC), coefficient of variation (CV) and Bland-Altman analyses.

Results

For intra-observer, the ICC ranged from 0.50–0.97 (fair–excellent) for all reference tissues. The CV ranged from 5.1–22.1 % for all reference tissues and observers. For inter-observer, the ICC for all pairwise observer combinations ranged from 0.44–0.92 (poor–excellent). The CV ranged from 8.1–31.1 %. Centrum semiovale was the only reference tissue that showed excellent intra- and inter-observer agreement (ICC>0.85) and lowest CVs (<12.5 %). Bland-Altman analyses showed that mean differences for centrum semiovale were close to zero.

Conclusion

Selecting contralateral centrum semiovale as reference tissue for rCBV provides the lowest observer variability.

Key Points

• Reference tissue selection for rCBV measurements adds variability to rCBV measurements.
• rCBV measurements vary depending on the choice of reference tissue.
• Observer variability of reference tissue selection varies between poor and excellent.
• Centrum semiovale as reference tissue for rCBV provides the lowest observer variability.
Literature
1.
go back to reference Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMed Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMed
2.
go back to reference Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 25:214–221PubMed Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 25:214–221PubMed
3.
go back to reference Barajas RF Jr, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496CrossRefPubMedPubMedCentral Barajas RF Jr, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496CrossRefPubMedPubMedCentral
4.
go back to reference Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584CrossRefPubMed Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584CrossRefPubMed
5.
go back to reference Sawlani RN, Raizer J, Horowitz SW et al (2010) Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging--pilot study. Radiology 255:622–628CrossRefPubMedPubMedCentral Sawlani RN, Raizer J, Horowitz SW et al (2010) Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging--pilot study. Radiology 255:622–628CrossRefPubMedPubMedCentral
6.
go back to reference Essock-Burns E, Lupo JM, Cha S et al (2011) Assessment of perfusion MRI-derived parameters in evaluating and predicting response to antiangiogenic therapy in patients with newly diagnosed glioblastoma. Neuro Oncol 13:119–131CrossRefPubMed Essock-Burns E, Lupo JM, Cha S et al (2011) Assessment of perfusion MRI-derived parameters in evaluating and predicting response to antiangiogenic therapy in patients with newly diagnosed glioblastoma. Neuro Oncol 13:119–131CrossRefPubMed
7.
go back to reference Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199PubMed Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199PubMed
8.
go back to reference Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMed Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMed
9.
go back to reference Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. Radiology 238:658–667CrossRefPubMed Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. Radiology 238:658–667CrossRefPubMed
10.
go back to reference Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716CrossRefPubMed Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716CrossRefPubMed
11.
go back to reference Mangla R, Singh G, Ziegelitz D et al Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584 Mangla R, Singh G, Ziegelitz D et al Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584
12.
go back to reference Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743CrossRefPubMed Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743CrossRefPubMed
13.
go back to reference Bedekar D, Jensen T, Schmainda KM (2010) Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 64:907–913CrossRefPubMedPubMedCentral Bedekar D, Jensen T, Schmainda KM (2010) Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 64:907–913CrossRefPubMedPubMedCentral
14.
go back to reference Emblem KE, Bjornerud A (2009) An automatic procedure for normalization of cerebral blood volume maps in dynamic susceptibility contrast-based glioma imaging. AJNR Am J Neuroradiol 30:1929–1932CrossRefPubMed Emblem KE, Bjornerud A (2009) An automatic procedure for normalization of cerebral blood volume maps in dynamic susceptibility contrast-based glioma imaging. AJNR Am J Neuroradiol 30:1929–1932CrossRefPubMed
15.
go back to reference Ellingson BM, Zaw T, Cloughesy TF et al (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 35:1472–1477CrossRefPubMed Ellingson BM, Zaw T, Cloughesy TF et al (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 35:1472–1477CrossRefPubMed
16.
go back to reference Santarosa C, Castellano A, Conte GM et al (2016) Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol 85:1147–1156CrossRefPubMed Santarosa C, Castellano A, Conte GM et al (2016) Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol 85:1147–1156CrossRefPubMed
17.
go back to reference Singh R, Kesavabhotla K, Kishore SA et al (2016) Dynamic Susceptibility Contrast-Enhanced MR Perfusion Imaging in Assessing Recurrent Glioblastoma Response to Superselective Intra-Arterial Bevacizumab Therapy. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A4823 Singh R, Kesavabhotla K, Kishore SA et al (2016) Dynamic Susceptibility Contrast-Enhanced MR Perfusion Imaging in Assessing Recurrent Glioblastoma Response to Superselective Intra-Arterial Bevacizumab Therapy. AJNR Am J Neuroradiol. https://​doi.​org/​10.​3174/​ajnr.​A4823
18.
go back to reference Wetzel SG, Cha S, Johnson G et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: inter-observer and intra-observer reproducibility study. Radiology 224:797–803CrossRefPubMed Wetzel SG, Cha S, Johnson G et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: inter-observer and intra-observer reproducibility study. Radiology 224:797–803CrossRefPubMed
19.
go back to reference Julia-Sape M, Lurgi M, Mier M et al (2012) Strategies for annotation and curation of translational databases: the eTUMOUR project. Database (Oxford) 2012:bas035 Julia-Sape M, Lurgi M, Mier M et al (2012) Strategies for annotation and curation of translational databases: the eTUMOUR project. Database (Oxford) 2012:bas035
20.
go back to reference Ostergaard L (1996) High Resolution Measurement of Cerebral Blood Flow using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis. Magn Reson Imaging Ostergaard L (1996) High Resolution Measurement of Cerebral Blood Flow using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis. Magn Reson Imaging
21.
go back to reference Weisskoff RM, Boxerman JL, Sorensen AG, Kulke SM, Campbell TA, Rosen BR (1994) Simulataneous Blood Volume and Permeability Mapping using a Single Gd-Based Contrast InjectionISMRM, San Francisco, pp 279 Weisskoff RM, Boxerman JL, Sorensen AG, Kulke SM, Campbell TA, Rosen BR (1994) Simulataneous Blood Volume and Permeability Mapping using a Single Gd-Based Contrast InjectionISMRM, San Francisco, pp 279
22.
go back to reference Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMed Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMed
23.
go back to reference Oppo K, Leen E, Angerson WJ, Cooke TG, McArdle CS (1998) Doppler perfusion index: an inter-observer and intra-observer reproducibility study. Radiology 208:453–457CrossRefPubMed Oppo K, Leen E, Angerson WJ, Cooke TG, McArdle CS (1998) Doppler perfusion index: an inter-observer and intra-observer reproducibility study. Radiology 208:453–457CrossRefPubMed
24.
go back to reference Willats L, Calamante F (2013) The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 26:913–931CrossRefPubMed Willats L, Calamante F (2013) The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 26:913–931CrossRefPubMed
25.
go back to reference Oei MTH, Goraj BM, Meijer FJA et al (2012) Variability of relative cerebral blood volume normalization in patients with gliomas: interobserver and intraobserver reproducibility study. International Society for Magnetic Resonance in Medicine (ISMRM), Melbourne Oei MTH, Goraj BM, Meijer FJA et al (2012) Variability of relative cerebral blood volume normalization in patients with gliomas: interobserver and intraobserver reproducibility study. International Society for Magnetic Resonance in Medicine (ISMRM), Melbourne
26.
go back to reference Goh V, Schaeffter T, Leach M (2013) Reproducibility of Dynamic Contrast-enhanced MR Imaging: Why We Should Care. Radiology 266:698–700CrossRefPubMed Goh V, Schaeffter T, Leach M (2013) Reproducibility of Dynamic Contrast-enhanced MR Imaging: Why We Should Care. Radiology 266:698–700CrossRefPubMed
27.
go back to reference Goh V, Halligan S, Hugill JA, Bassett P, Bartram CI (2005) Quantitative assessment of colorectal cancer perfusion using MDCT: inter- and intra-observer agreement. American Journal of Roentgenology 185:225–231CrossRefPubMed Goh V, Halligan S, Hugill JA, Bassett P, Bartram CI (2005) Quantitative assessment of colorectal cancer perfusion using MDCT: inter- and intra-observer agreement. American Journal of Roentgenology 185:225–231CrossRefPubMed
28.
go back to reference Petralia G, Preda L, Raimondi S et al (2009) Intra- and inter-observer agreement and impact of arterial input selection in perfusion CT measurements performed in squamous cell carcinoma of the upper aerodigestive tract. AJNR Am J Neuroradiol 30:1107–1115CrossRefPubMed Petralia G, Preda L, Raimondi S et al (2009) Intra- and inter-observer agreement and impact of arterial input selection in perfusion CT measurements performed in squamous cell carcinoma of the upper aerodigestive tract. AJNR Am J Neuroradiol 30:1107–1115CrossRefPubMed
29.
go back to reference Bisdas S, Surlan-Popovic K, Didanovic V, Vogl TJ (2008) Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement. Eur Radiol 18:2241–2250CrossRefPubMed Bisdas S, Surlan-Popovic K, Didanovic V, Vogl TJ (2008) Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement. Eur Radiol 18:2241–2250CrossRefPubMed
30.
go back to reference Vos MJ, Uitdehaag BM, Barkhof F et al (2003) Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 60:826–830CrossRefPubMed Vos MJ, Uitdehaag BM, Barkhof F et al (2003) Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 60:826–830CrossRefPubMed
31.
go back to reference Erasmus JJ, Gladish GW, Broemeling L et al (2003) Interobserver and intra-observer variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 21:2574–2582CrossRefPubMed Erasmus JJ, Gladish GW, Broemeling L et al (2003) Interobserver and intra-observer variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 21:2574–2582CrossRefPubMed
32.
go back to reference Heye T, Merkle EM, Reiner CS et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and inter-observer variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266:812–821CrossRefPubMed Heye T, Merkle EM, Reiner CS et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and inter-observer variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266:812–821CrossRefPubMed
33.
go back to reference Carroll TJ, Haughton VM, Rowley HA, Cordes D (2002) Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. AJNR Am J Neuroradiol 23:1007–1012PubMed Carroll TJ, Haughton VM, Rowley HA, Cordes D (2002) Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. AJNR Am J Neuroradiol 23:1007–1012PubMed
Metadata
Title
Observer variability of reference tissue selection for relativecerebral blood volume measurements in glioma patients
Authors
Marcel T. H. Oei
Frederick J. A. Meijer
Jan-Jurre Mordang
Ewoud J. Smit
Albert J. S. Idema
Bozena M. Goraj
Hendrik O. A. Laue
Mathias Prokop
Rashindra Manniesing
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5353-y

Other articles of this Issue 9/2018

European Radiology 9/2018 Go to the issue