Skip to main content
Top
Published in: European Radiology 9/2018

01-09-2018 | Breast

Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT

Authors: Xinbin Li, Hewei Gao, Zhiqiang Chen, Li Zhang, Xiaohua Zhu, Shengping Wang, Weijun Peng

Published in: European Radiology | Issue 9/2018

Login to get access

Abstract

Objectives

Microcalcifications are an important feature in the diagnosis of breast cancer, especially in the early stages. In this paper, a CT-based method is proposed to potentially distinguish benign and malignant breast diseases based on the distributions of microcalcifications using grating-based phase-contrast imaging on a conventional X-ray tube.

Methods

The method presented based on the ratio of dark-field signals to attenuation signals in CT images is compared with the existing method based on the ratio in projections, and the threshold for the classification of microcalcifications in the two types of breast diseases is obtained using our approach. The experiment was operated on paraffin-fixed specimens that originated from 20 female patients ranging from 27–65 years old.

Results

Compared with the method based on projection images (AUC = 0.87), the proposed method is more effective (AUC = 0.95) to distinguish the two types of diseases. The discrimination threshold of microcalcifications for the classification of diseases in CT images is found to be 3.78 based on the Youden index.

Conclusions

The proposed method can be further developed to improve the early diagnosis and diagnostic accuracy and reduce the clinical misdiagnosis rate of breast cancer.

Key Points

Microcalcifications are of special importance to indicate early breast cancer.
Grating-based phase-contrast imaging can improve the diagnosis of breast cancers.
The method described here can better classify benign and malignant breast diseases.
Literature
2.
3.
go back to reference Hilleren DJ, Andersson IT, Lindholm K, Linnell FS (1991) Invasive lobular carcinoma: mammographic findings in a 10-year experience. Radiology 178:149–154CrossRefPubMed Hilleren DJ, Andersson IT, Lindholm K, Linnell FS (1991) Invasive lobular carcinoma: mammographic findings in a 10-year experience. Radiology 178:149–154CrossRefPubMed
4.
go back to reference Brenner RJ, Pfaff JM (1996) Mammographic features after conservation therapy for malignant breast disease: Serial findings standardized by regression analysis. Am J Roentgenol 167:171–178CrossRef Brenner RJ, Pfaff JM (1996) Mammographic features after conservation therapy for malignant breast disease: Serial findings standardized by regression analysis. Am J Roentgenol 167:171–178CrossRef
6.
go back to reference Anton G, Bayer F, Beckmann MW, et al (2013) Grating-based darkfield imaging of human breast tissue. Z Med Phys 23:228–235CrossRefPubMed Anton G, Bayer F, Beckmann MW, et al (2013) Grating-based darkfield imaging of human breast tissue. Z Med Phys 23:228–235CrossRefPubMed
7.
go back to reference Radi MJ (1989) Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch Pathol Lab Med 113:1367–1369PubMed Radi MJ (1989) Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch Pathol Lab Med 113:1367–1369PubMed
8.
go back to reference Johnson JM (1999) Histological Correlation of Microcalcifications in Breast Biopsy Specimens. Arch Surg 134:712CrossRefPubMed Johnson JM (1999) Histological Correlation of Microcalcifications in Breast Biopsy Specimens. Arch Surg 134:712CrossRefPubMed
9.
go back to reference Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2002) Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using raman spectroscopy. Cancer Res. 62:5375–5380PubMed Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2002) Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using raman spectroscopy. Cancer Res. 62:5375–5380PubMed
10.
go back to reference Dahlstrom JE, Jain S (2001) Histological correlation of mammographically detected microcalcifications in stereotactic core biopsies. Pathology 33:444–448CrossRefPubMed Dahlstrom JE, Jain S (2001) Histological correlation of mammographically detected microcalcifications in stereotactic core biopsies. Pathology 33:444–448CrossRefPubMed
11.
go back to reference Ellis IO, Humphreys S, Michell M, Pinder SE, Wells CA, Zakhour HD (2004) Best Practice No 179. Guidelines for breast needle core biopsy handling and reporting in breast screening assessment. J Clin Pathol 57:897–902CrossRefPubMedPubMedCentral Ellis IO, Humphreys S, Michell M, Pinder SE, Wells CA, Zakhour HD (2004) Best Practice No 179. Guidelines for breast needle core biopsy handling and reporting in breast screening assessment. J Clin Pathol 57:897–902CrossRefPubMedPubMedCentral
12.
go back to reference Cai W, Ning R (2009) Dose efficiency consideration for volume-of-interest breast imaging using x-ray differential phase-contrast CT. Proc SPIE 7258:72584D–72584D–9CrossRef Cai W, Ning R (2009) Dose efficiency consideration for volume-of-interest breast imaging using x-ray differential phase-contrast CT. Proc SPIE 7258:72584D–72584D–9CrossRef
13.
go back to reference Stampanoni M, Wang Z, Thüring T, et al (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Radiol 46:801–806CrossRefPubMed Stampanoni M, Wang Z, Thüring T, et al (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Radiol 46:801–806CrossRefPubMed
14.
go back to reference Hauser N, Wang Z, Kubik-Huch RA, et al (2014) A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography. Invest Radiol 49:131–137CrossRefPubMed Hauser N, Wang Z, Kubik-Huch RA, et al (2014) A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography. Invest Radiol 49:131–137CrossRefPubMed
15.
go back to reference Sztrókay A, Herzen J, Auweter SD, et al (2013) Assessment of grating-based X-ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up. Eur Radiol 23:381–387CrossRefPubMed Sztrókay A, Herzen J, Auweter SD, et al (2013) Assessment of grating-based X-ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up. Eur Radiol 23:381–387CrossRefPubMed
16.
go back to reference Willner M, Herzen J, Grandl S, et al (2014) Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 59:1557–1571CrossRefPubMed Willner M, Herzen J, Grandl S, et al (2014) Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 59:1557–1571CrossRefPubMed
17.
go back to reference Michette A, Buckley C (1993) X-ray science and technology Michette A, Buckley C (1993) X-ray science and technology
18.
go back to reference Keyrilainen J, Bravin A, Fernandez M, Tenhunen M, Virkkunen P, Suortti P (2010) Phase-contrast X-ray imaging of breast. Acta Radiol 51:866–884CrossRefPubMed Keyrilainen J, Bravin A, Fernandez M, Tenhunen M, Virkkunen P, Suortti P (2010) Phase-contrast X-ray imaging of breast. Acta Radiol 51:866–884CrossRefPubMed
19.
20.
go back to reference Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156CrossRef Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156CrossRef
21.
go back to reference Momose A, Fukuda J (1995) Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys 22:375–379CrossRefPubMed Momose A, Fukuda J (1995) Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys 22:375–379CrossRefPubMed
22.
go back to reference Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598CrossRef Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598CrossRef
23.
go back to reference Chapman D, Thomlinson W, Johnston RE, et al (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025CrossRefPubMed Chapman D, Thomlinson W, Johnston RE, et al (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025CrossRefPubMed
24.
go back to reference Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492CrossRef Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492CrossRef
25.
go back to reference Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRef Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRef
26.
go back to reference Chen R, Liu P, Xiao T, Xu LX (2014) X-ray imaging for non-destructive microstructure analysis at SSRF. Adv Mater 26:7688–7691CrossRefPubMed Chen R, Liu P, Xiao T, Xu LX (2014) X-ray imaging for non-destructive microstructure analysis at SSRF. Adv Mater 26:7688–7691CrossRefPubMed
27.
go back to reference David C, Nöhammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289CrossRef David C, Nöhammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289CrossRef
28.
go back to reference Momose A (2003) Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt Express 11:2303–2314CrossRefPubMed Momose A (2003) Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt Express 11:2303–2314CrossRefPubMed
29.
go back to reference Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef
30.
go back to reference David C, Weitkamp T, Pfeiffer F, et al (2007) Hard X-ray phase imaging and tomography using a grating interferometer. Spectrochim Acta B At Spectrosc 62:626–630CrossRef David C, Weitkamp T, Pfeiffer F, et al (2007) Hard X-ray phase imaging and tomography using a grating interferometer. Spectrochim Acta B At Spectrosc 62:626–630CrossRef
31.
go back to reference Pfeiffer F (2012) Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging. AIP Conf Proc 1466:2–11CrossRef Pfeiffer F (2012) Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging. AIP Conf Proc 1466:2–11CrossRef
32.
go back to reference Coan P, Bravin A, Tromba G (2013) Phase-contrast x-ray imaging of the breast: recent developments towards clinics. J Phys D Appl Phys 46:494007CrossRef Coan P, Bravin A, Tromba G (2013) Phase-contrast x-ray imaging of the breast: recent developments towards clinics. J Phys D Appl Phys 46:494007CrossRef
33.
go back to reference Roessl E, Daerr H, Koehler T, Martens G, van Stevendaal U (2014) Clinical boundary conditions for grating-based differential phase-contrast mammography. Philos Trans R Soc A Math Phys Eng Sci 372:1–7CrossRef Roessl E, Daerr H, Koehler T, Martens G, van Stevendaal U (2014) Clinical boundary conditions for grating-based differential phase-contrast mammography. Philos Trans R Soc A Math Phys Eng Sci 372:1–7CrossRef
34.
go back to reference Fredenberg E, Danielsson M, Stayman JW, Siewerdsen JH, Aslund M, Åslund M (2012) Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach. Med Phys 39:5317–5335CrossRefPubMedPubMedCentral Fredenberg E, Danielsson M, Stayman JW, Siewerdsen JH, Aslund M, Åslund M (2012) Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach. Med Phys 39:5317–5335CrossRefPubMedPubMedCentral
35.
go back to reference Olivo A, Gkoumas S, Endrizzi M, et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:90701CrossRef Olivo A, Gkoumas S, Endrizzi M, et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:90701CrossRef
36.
go back to reference Morita T, Yamada M, Kano A, Nagatsuka S, Honda C, Endo T (2008) A comparison between film-screen mammography and full-field digital mammography utilizing phase contrast technology in breast cancer screening programs. Digital Mammography 2008:48–54 Morita T, Yamada M, Kano A, Nagatsuka S, Honda C, Endo T (2008) A comparison between film-screen mammography and full-field digital mammography utilizing phase contrast technology in breast cancer screening programs. Digital Mammography 2008:48–54
37.
go back to reference Tanaka T, Honda C, Matsuo S, et al (2005) The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube. Invest Radiol 40:385–396CrossRefPubMed Tanaka T, Honda C, Matsuo S, et al (2005) The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube. Invest Radiol 40:385–396CrossRefPubMed
38.
go back to reference Michel T, Rieger J, Anton G, et al (2013) On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys Med Biol 58:2713–2732CrossRefPubMed Michel T, Rieger J, Anton G, et al (2013) On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys Med Biol 58:2713–2732CrossRefPubMed
39.
go back to reference Wang Z, Hauser N, Singer G, et al (2014) Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nat Commun 5:3797CrossRefPubMed Wang Z, Hauser N, Singer G, et al (2014) Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nat Commun 5:3797CrossRefPubMed
40.
go back to reference Scherer KH (2016) Grating-Based X-Ray Phase-Contrast Mammography. Technical University of Munich, GermanyCrossRef Scherer KH (2016) Grating-Based X-Ray Phase-Contrast Mammography. Technical University of Munich, GermanyCrossRef
41.
go back to reference Wang ZT, Kang KJ, Huang ZF, Chen ZQ (2009) Quantitative grating-based x-ray dark-field computed tomography. Appl Phys Lett 95:94105CrossRef Wang ZT, Kang KJ, Huang ZF, Chen ZQ (2009) Quantitative grating-based x-ray dark-field computed tomography. Appl Phys Lett 95:94105CrossRef
43.
go back to reference Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874CrossRef Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874CrossRef
44.
go back to reference Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol Illinois 143:29–36CrossRef Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol Illinois 143:29–36CrossRef
45.
go back to reference Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577PubMed Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577PubMed
47.
go back to reference Schisterman EF, Perkins NJ, Liu A, Bondell H (2005) Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 16:73–81CrossRefPubMed Schisterman EF, Perkins NJ, Liu A, Bondell H (2005) Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 16:73–81CrossRefPubMed
48.
go back to reference Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical J. 50:419–430CrossRef Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical J. 50:419–430CrossRef
50.
go back to reference Grandl S, Scherer K, Sztrokay-Gaul A, et al (2015) Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study. Eur Radiol 25:3659–3668CrossRefPubMedPubMedCentral Grandl S, Scherer K, Sztrokay-Gaul A, et al (2015) Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study. Eur Radiol 25:3659–3668CrossRefPubMedPubMedCentral
52.
go back to reference Liu J, Cai W, Ning R (2016) Evaluation of differential phase contrast cone beam CT imaging system. J Xray Sci Technol 25:357–372 Liu J, Cai W, Ning R (2016) Evaluation of differential phase contrast cone beam CT imaging system. J Xray Sci Technol 25:357–372
53.
go back to reference Ge Y, Li K, Garrett J, Chen GH (2014) Grating based x-ray differential phase contrast imaging without mechanical phase stepping. Opt Express 22:14246–14252CrossRefPubMed Ge Y, Li K, Garrett J, Chen GH (2014) Grating based x-ray differential phase contrast imaging without mechanical phase stepping. Opt Express 22:14246–14252CrossRefPubMed
54.
go back to reference Kagias M, Wang Z, Villanueva-Perez P, Jefimovs K, Stampanoni M (2016) 2D-Omnidirectional Hard-X-Ray Scattering Sensitivity in a Single Shot. Phys Rev Lett 116:93902CrossRef Kagias M, Wang Z, Villanueva-Perez P, Jefimovs K, Stampanoni M (2016) 2D-Omnidirectional Hard-X-Ray Scattering Sensitivity in a Single Shot. Phys Rev Lett 116:93902CrossRef
55.
go back to reference Momose A, Yashiro W, Harasse S, Kuwabara H (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432CrossRefPubMed Momose A, Yashiro W, Harasse S, Kuwabara H (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432CrossRefPubMed
56.
go back to reference Wang Z, Huang Z, Zhang L, et al (2011) Low dose reconstruction algorithm for differential phase contrast imaging. J Xray Sci Technol 19:403–415PubMed Wang Z, Huang Z, Zhang L, et al (2011) Low dose reconstruction algorithm for differential phase contrast imaging. J Xray Sci Technol 19:403–415PubMed
57.
go back to reference Stutman D, Finkenthal M (2012) Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy. Appl. Phys. Lett. 101:1–6CrossRef Stutman D, Finkenthal M (2012) Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy. Appl. Phys. Lett. 101:1–6CrossRef
59.
go back to reference Miao H, Chen L, Bennett EE, et al (2013) Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci 110:19268–19272CrossRefPubMedPubMedCentral Miao H, Chen L, Bennett EE, et al (2013) Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci 110:19268–19272CrossRefPubMedPubMedCentral
60.
go back to reference Bevins N, Zambelli J, Li K, Qi Z, Chen G-H (2012) Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping. Med Phys 39:424CrossRefPubMed Bevins N, Zambelli J, Li K, Qi Z, Chen G-H (2012) Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping. Med Phys 39:424CrossRefPubMed
62.
go back to reference Xie H, Cai W, Yang L, Mao H, Tang X (2016) Reducing radiation dose in grating based x-ray phase contrast CT with twin-peaks in its phase stepping curves. Med Phys 43:5942–5950CrossRefPubMedPubMedCentral Xie H, Cai W, Yang L, Mao H, Tang X (2016) Reducing radiation dose in grating based x-ray phase contrast CT with twin-peaks in its phase stepping curves. Med Phys 43:5942–5950CrossRefPubMedPubMedCentral
Metadata
Title
Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT
Authors
Xinbin Li
Hewei Gao
Zhiqiang Chen
Li Zhang
Xiaohua Zhu
Shengping Wang
Weijun Peng
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-5158-4

Other articles of this Issue 9/2018

European Radiology 9/2018 Go to the issue