Skip to main content
Top
Published in: European Radiology 6/2017

01-06-2017 | Magnetic Resonance

Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery

Authors: Yu Luo, Zhongying Gong, Yongming Zhou, Binge Chang, Chao Chai, Taiyuan Liu, Yanhong Han, Meiyun Wang, Tianyi Qian, E Mark Haacke, Shuang Xia

Published in: European Radiology | Issue 6/2017

Login to get access

Abstract

Objectives

To evaluate tissue perfusion and venous susceptibility in ischaemic stroke patients as a means to predict clinical status and early prognosis.

Methods

A retrospective study of 51 ischaemic stroke patients were enrolled in this study. Susceptibility, perfusion and National Institute of Health stroke scale (NIHSS) were compared between patients with and without asymmetrically prominent cortical veins (APCVs). The correlation between susceptibility, perfusion and NIHSS was performed.

Results

Compared to patients without APCVs, the age of patients with APCVs was statistically older (p = 0.017). Patients with APCVs at discharge showed clinical deterioration in their NIHSS. Mean transit time (MTT), time to peak (TTP) and cerebral blood flow (CBF) in the stroke hemisphere were statistically delayed/decreased in patients with and without APCVs (all p < 0.05). In patients with APCVs, the changes in susceptibility positively correlated with increases in MTT and TTP (p < 0.05). Susceptibility and TTP positively correlated and CBF negatively correlated with NIHSS both at admission and discharge (p < 0.05).

Conclusions

Patients with APCVs have a tendency of deterioration. The presence of APCVs indicates the tissue has increased oxygen extraction fraction. Increased susceptibility from APCVs positively correlated with the delayed MTT and TTP, which reflects the clinical status at admission and predicts an early prognosis.

Key points

Patients with and without APCVs have similar misery perfusion.
Patients with APCVs have a tendency of deterioration compared to those without.
The presence of APCVs indicated the tissue has increased oxygen extraction fraction.
Increased susceptibility from APCVs positively correlated with the MTT and TTP.
Increased susceptibility from APCVs reflected the clinical status at admission.
Literature
1.
go back to reference Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP (2015) Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One 10:e0131118CrossRefPubMedPubMedCentral Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP (2015) Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One 10:e0131118CrossRefPubMedPubMedCentral
2.
go back to reference Polan RM, Poretti A, Huisman TA, Bosemani T (2015) Susceptibility-weighted imaging in pediatric arterial ischemic stroke: a valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics. AJNR Am J Neuroradiol 36:783–788CrossRefPubMed Polan RM, Poretti A, Huisman TA, Bosemani T (2015) Susceptibility-weighted imaging in pediatric arterial ischemic stroke: a valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics. AJNR Am J Neuroradiol 36:783–788CrossRefPubMed
3.
go back to reference Park MG, Yang TI, Oh SJ, Baik SK, Kang YH, Park KP (2014) Multiple hypointense vessels on susceptibility-weighted imaging in acute ischemic stroke: surrogate marker of oxygen extraction fraction in penumbra? Cerebrovasc Dis 38:254–261CrossRefPubMed Park MG, Yang TI, Oh SJ, Baik SK, Kang YH, Park KP (2014) Multiple hypointense vessels on susceptibility-weighted imaging in acute ischemic stroke: surrogate marker of oxygen extraction fraction in penumbra? Cerebrovasc Dis 38:254–261CrossRefPubMed
4.
go back to reference Naik D, Viswamitra S, Kumar AA, Srinath MG (2014) Susceptibility weighted magnetic resonance imaging of brain: a multifaceted powerful sequence that adds to understanding of acute stroke. Ann Indian Acad Neurol 17:58–61CrossRefPubMedPubMedCentral Naik D, Viswamitra S, Kumar AA, Srinath MG (2014) Susceptibility weighted magnetic resonance imaging of brain: a multifaceted powerful sequence that adds to understanding of acute stroke. Ann Indian Acad Neurol 17:58–61CrossRefPubMedPubMedCentral
5.
go back to reference Meoded A, Poretti A, Benson JE, Tekes A, Huisman TA (2014) Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol 41:108–116CrossRefPubMed Meoded A, Poretti A, Benson JE, Tekes A, Huisman TA (2014) Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol 41:108–116CrossRefPubMed
6.
go back to reference Jensen-Kondering U, Bohm R (2013) Asymmetrically hypointense veins on T2*w imaging and susceptibility-weighted imaging in ischemic stroke. World J Radiol 5:156–165PubMedPubMedCentral Jensen-Kondering U, Bohm R (2013) Asymmetrically hypointense veins on T2*w imaging and susceptibility-weighted imaging in ischemic stroke. World J Radiol 5:156–165PubMedPubMedCentral
7.
go back to reference Xia S, Utriainen D, Tang J et al (2014) Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging 32:1272–1276CrossRefPubMed Xia S, Utriainen D, Tang J et al (2014) Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging 32:1272–1276CrossRefPubMed
8.
go back to reference Hermier M, Nighoghossian N (2004) Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35:1989–1994CrossRefPubMed Hermier M, Nighoghossian N (2004) Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35:1989–1994CrossRefPubMed
9.
go back to reference Huang P, Chen CH, Lin WC, Lin RT, Khor GT, Liu CK (2012) Clinical applications of susceptibility weighted imaging in patients with major stroke. J Neurol 259:1426–1432CrossRefPubMed Huang P, Chen CH, Lin WC, Lin RT, Khor GT, Liu CK (2012) Clinical applications of susceptibility weighted imaging in patients with major stroke. J Neurol 259:1426–1432CrossRefPubMed
10.
go back to reference Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252CrossRefPubMedPubMedCentral Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252CrossRefPubMedPubMedCentral
11.
go back to reference Kao HW, Tsai FY, Hasso AN (2012) Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 22:1397–1403CrossRefPubMed Kao HW, Tsai FY, Hasso AN (2012) Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 22:1397–1403CrossRefPubMed
12.
go back to reference Viallon M, Altrichter S, Pereira VM et al (2010) Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3T. Eur Neurol 64:286–296CrossRefPubMed Viallon M, Altrichter S, Pereira VM et al (2010) Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3T. Eur Neurol 64:286–296CrossRefPubMed
13.
go back to reference Verma RK, Hsieh K, Gratz PP et al (2014) Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol 83:1448–1454CrossRefPubMed Verma RK, Hsieh K, Gratz PP et al (2014) Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol 83:1448–1454CrossRefPubMed
14.
go back to reference Chai C, Yan S, Chu Z et al (2015) Quantitative measurement of brain iron deposition in patients with haemodialysis using susceptibility mapping. Metab Brain Dis 30:563–571CrossRefPubMed Chai C, Yan S, Chu Z et al (2015) Quantitative measurement of brain iron deposition in patients with haemodialysis using susceptibility mapping. Metab Brain Dis 30:563–571CrossRefPubMed
15.
go back to reference Liu J, Xia S, Hanks R et al (2016) Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma 33:10–21CrossRefPubMed Liu J, Xia S, Hanks R et al (2016) Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma 33:10–21CrossRefPubMed
16.
go back to reference Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41CrossRefPubMed Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41CrossRefPubMed
17.
go back to reference Zaitsu Y, Kudo K, Terae S et al (2011) Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology 261:930–936CrossRefPubMed Zaitsu Y, Kudo K, Terae S et al (2011) Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology 261:930–936CrossRefPubMed
18.
go back to reference Kou Z, Ye Y, Haacke EM (2015) Evaluating the role of reduced oxygen saturation and vascular damage in traumatic brain injury using magnetic resonance perfusion-weighted imaging and susceptibility-weighted imaging and mapping. Top Magn Reson Imaging 24:253–265CrossRefPubMed Kou Z, Ye Y, Haacke EM (2015) Evaluating the role of reduced oxygen saturation and vascular damage in traumatic brain injury using magnetic resonance perfusion-weighted imaging and susceptibility-weighted imaging and mapping. Top Magn Reson Imaging 24:253–265CrossRefPubMed
19.
go back to reference Xia S, Zheng G, Shen W et al (2015) Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiol 56:339–346CrossRefPubMed Xia S, Zheng G, Shen W et al (2015) Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiol 56:339–346CrossRefPubMed
20.
go back to reference Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377CrossRefPubMed Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377CrossRefPubMed
21.
go back to reference Special report from the National Institute of Neurological Disorders and Stroke (1990) Classification of cerebrovascular diseases III. Stroke 21:637–676CrossRef Special report from the National Institute of Neurological Disorders and Stroke (1990) Classification of cerebrovascular diseases III. Stroke 21:637–676CrossRef
22.
go back to reference Wang W, Zhang L, Liu W, Zhu Q, Lan Q, Zhao J (2016) Antiplatelet agents for the secondary prevention of ischemic stroke or transient ischemic attack: a network meta-analysis. J Stroke Cerebrovasc Dis 25:1081–1089CrossRefPubMed Wang W, Zhang L, Liu W, Zhu Q, Lan Q, Zhao J (2016) Antiplatelet agents for the secondary prevention of ischemic stroke or transient ischemic attack: a network meta-analysis. J Stroke Cerebrovasc Dis 25:1081–1089CrossRefPubMed
23.
go back to reference Pandian DS, Ciulla C, Haacke EM, Jiang J, Ayaz M (2008) Complex threshold method for identifying pixels that contain predominantly noise in magnetic resonance images. J Magn Reson Imaging 28:727–735CrossRefPubMed Pandian DS, Ciulla C, Haacke EM, Jiang J, Ayaz M (2008) Complex threshold method for identifying pixels that contain predominantly noise in magnetic resonance images. J Magn Reson Imaging 28:727–735CrossRefPubMed
24.
go back to reference Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32:663–676CrossRefPubMedPubMedCentral Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32:663–676CrossRefPubMedPubMedCentral
25.
go back to reference Yu X, Yuan L, Jackson A et al (2016) Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol 37:423–429CrossRefPubMed Yu X, Yuan L, Jackson A et al (2016) Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol 37:423–429CrossRefPubMed
26.
go back to reference Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725CrossRefPubMed Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725CrossRefPubMed
27.
go back to reference Sakoh M, Ostergaard L, Gjedde A, Røhl L, Vestergaard-Poulsen P, Smith DF et al (2001) Prediction of tissue survival after middle cerebral artery occlusion based on changes in the apparent diffusion of water. J Neurosurg 95:450–458CrossRefPubMed Sakoh M, Ostergaard L, Gjedde A, Røhl L, Vestergaard-Poulsen P, Smith DF et al (2001) Prediction of tissue survival after middle cerebral artery occlusion based on changes in the apparent diffusion of water. J Neurosurg 95:450–458CrossRefPubMed
28.
go back to reference Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Thiel A, Dohmen C et al (2004) Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusionweighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 35:2843–2847CrossRefPubMed Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Thiel A, Dohmen C et al (2004) Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusionweighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 35:2843–2847CrossRefPubMed
29.
go back to reference Alves HC, Pacheco FT, Rocha AJ (2016) Collateral blood vessels in acute ischemic stroke: a physiological window to predict future outcomes. Arq Neuropsiquiatr 74:662–670CrossRefPubMed Alves HC, Pacheco FT, Rocha AJ (2016) Collateral blood vessels in acute ischemic stroke: a physiological window to predict future outcomes. Arq Neuropsiquiatr 74:662–670CrossRefPubMed
30.
go back to reference Martín A, Macé E, Boisgard R, Montaldo G, Thézé B, Tanter M et al (2012) Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. J Cereb Blood Flow Metab 32:1496–1507CrossRefPubMedPubMedCentral Martín A, Macé E, Boisgard R, Montaldo G, Thézé B, Tanter M et al (2012) Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. J Cereb Blood Flow Metab 32:1496–1507CrossRefPubMedPubMedCentral
31.
go back to reference Luo S, Yang L, Wang L (2015) Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke. J Neuroradiol 42:255–260CrossRefPubMed Luo S, Yang L, Wang L (2015) Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke. J Neuroradiol 42:255–260CrossRefPubMed
32.
go back to reference Wang XC, Gao PY, Xue J, Liu GR, Ma L (2010) Identification of infarct core and penumbra in acute stroke using CT perfusion source images. AJNR Am J Neuroradiol 31:34–39CrossRefPubMed Wang XC, Gao PY, Xue J, Liu GR, Ma L (2010) Identification of infarct core and penumbra in acute stroke using CT perfusion source images. AJNR Am J Neuroradiol 31:34–39CrossRefPubMed
33.
go back to reference Fisher M (2004) The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis 17(Suppl 1):1–6PubMed Fisher M (2004) The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis 17(Suppl 1):1–6PubMed
34.
go back to reference Fujioka M, Okuchi K, Iwamura A, Taoka T, Siesjo BK (2013) A mismatch between the abnormalities in diffusion- and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J Stroke Cerebrovasc Dis 22:1428–1431CrossRefPubMed Fujioka M, Okuchi K, Iwamura A, Taoka T, Siesjo BK (2013) A mismatch between the abnormalities in diffusion- and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J Stroke Cerebrovasc Dis 22:1428–1431CrossRefPubMed
35.
go back to reference Kim YW, Kim HJ, Choi SH, Kim DC (2014) Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol 55:1008–1014CrossRefPubMed Kim YW, Kim HJ, Choi SH, Kim DC (2014) Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol 55:1008–1014CrossRefPubMed
36.
go back to reference Hodel J, Rodallec M, Gerber S et al (2012) Susceptibility weighted magnetic resonance sequences “SWAN, SWI and VenoBOLD”: technical aspects and clinical applications. J Neuroradiol 39:71–86CrossRefPubMed Hodel J, Rodallec M, Gerber S et al (2012) Susceptibility weighted magnetic resonance sequences “SWAN, SWI and VenoBOLD”: technical aspects and clinical applications. J Neuroradiol 39:71–86CrossRefPubMed
37.
go back to reference Roussel SA, van Bruggen N, King MD, Gadian DG (1995) Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J Cereb Blood Flow Metab 15:578–586CrossRefPubMed Roussel SA, van Bruggen N, King MD, Gadian DG (1995) Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J Cereb Blood Flow Metab 15:578–586CrossRefPubMed
38.
go back to reference Toyama H, Takeshita G, Takeuchi A et al (1990) Cerebral hemodynamics in patients with chronic obstructive carotid disease by rCBF, rCBV, and rCBV/rCBF ratio using SPECT. J Nucl Med 31:55–60PubMed Toyama H, Takeshita G, Takeuchi A et al (1990) Cerebral hemodynamics in patients with chronic obstructive carotid disease by rCBF, rCBV, and rCBV/rCBF ratio using SPECT. J Nucl Med 31:55–60PubMed
39.
go back to reference Auer LM, Pucher R, Leber K, Ishiyama N (1987) Autoregulatory response of pial vessels in the cat. Neurol Res 9:245–248CrossRefPubMed Auer LM, Pucher R, Leber K, Ishiyama N (1987) Autoregulatory response of pial vessels in the cat. Neurol Res 9:245–248CrossRefPubMed
40.
go back to reference Bosemani T, Poretti A, Orman G, Meoded A, Huisman TA (2013) Pediatric cerebral stroke: susceptibility-weighted imaging may predict post-ischemic malignant edema. Neuroradiol J 26:579–583CrossRefPubMedPubMedCentral Bosemani T, Poretti A, Orman G, Meoded A, Huisman TA (2013) Pediatric cerebral stroke: susceptibility-weighted imaging may predict post-ischemic malignant edema. Neuroradiol J 26:579–583CrossRefPubMedPubMedCentral
41.
go back to reference Baik SK, Choi W, Oh SJ et al (2012) Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis 34:206–212CrossRefPubMed Baik SK, Choi W, Oh SJ et al (2012) Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis 34:206–212CrossRefPubMed
42.
go back to reference Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR (2007) Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 68:730–736CrossRefPubMed Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR (2007) Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 68:730–736CrossRefPubMed
43.
go back to reference Murphy BD, Fox AJ, Lee DH et al (2006) Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke 37:1771–1777CrossRefPubMed Murphy BD, Fox AJ, Lee DH et al (2006) Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke 37:1771–1777CrossRefPubMed
44.
go back to reference Kesavadas C, Thomas B, Pendharakar H, Sylaja PN (2011) Susceptibility weighted imaging: does it give information similar to perfusion weighted imaging in acute stroke? J Neurol 258:932–934CrossRefPubMed Kesavadas C, Thomas B, Pendharakar H, Sylaja PN (2011) Susceptibility weighted imaging: does it give information similar to perfusion weighted imaging in acute stroke? J Neurol 258:932–934CrossRefPubMed
45.
go back to reference Ueda T, Yuh WT, Maley JE, Quets JP, Hahn PY, Magnotta VA (1999) Outcome of acute ischemic lesions evaluated by diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 20:983–989PubMed Ueda T, Yuh WT, Maley JE, Quets JP, Hahn PY, Magnotta VA (1999) Outcome of acute ischemic lesions evaluated by diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 20:983–989PubMed
46.
go back to reference Yata K, Suzuki A, Hatazawa J et al (2006) Relationship between cerebral circulatory reserve and oxygen extraction fraction in patients with major cerebral artery occlusive disease: a positron emission tomography study. Stroke 37:534–536CrossRefPubMed Yata K, Suzuki A, Hatazawa J et al (2006) Relationship between cerebral circulatory reserve and oxygen extraction fraction in patients with major cerebral artery occlusive disease: a positron emission tomography study. Stroke 37:534–536CrossRefPubMed
47.
go back to reference Xia XB, Tan CL (2013) A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. J Neuroradiol 40:355–359CrossRefPubMed Xia XB, Tan CL (2013) A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. J Neuroradiol 40:355–359CrossRefPubMed
48.
go back to reference Drier A, Tourdias T, Attal Y et al (2012) Prediction of subacute infarct size in acute middle cerebral artery stroke: comparison of perfusion-weighted imaging and apparent diffusion coefficient maps. Radiology 265:511–517CrossRefPubMed Drier A, Tourdias T, Attal Y et al (2012) Prediction of subacute infarct size in acute middle cerebral artery stroke: comparison of perfusion-weighted imaging and apparent diffusion coefficient maps. Radiology 265:511–517CrossRefPubMed
49.
go back to reference Bang OY, Kim GM, Chung CS et al (2010) Differential pathophysiological mechanisms of stroke evolution between new lesions and lesion growth: perfusion-weighted imaging study. Cerebrovasc Dis 29:328–335CrossRefPubMed Bang OY, Kim GM, Chung CS et al (2010) Differential pathophysiological mechanisms of stroke evolution between new lesions and lesion growth: perfusion-weighted imaging study. Cerebrovasc Dis 29:328–335CrossRefPubMed
50.
go back to reference Karonen JO, Liu Y, Vanninen RL et al (2000) Combined perfusion- and diffusion-weighted MR imaging in acute ischemic stroke during the 1st week: a longitudinal study. Radiology 217:886–894CrossRefPubMed Karonen JO, Liu Y, Vanninen RL et al (2000) Combined perfusion- and diffusion-weighted MR imaging in acute ischemic stroke during the 1st week: a longitudinal study. Radiology 217:886–894CrossRefPubMed
51.
go back to reference Wittsack HJ, Ritzl A, Fink GR et al (2002) MR imaging in acute stroke: diffusion-weighted and perfusion imaging parameters for predicting infarct size. Radiology 222:397–403CrossRefPubMed Wittsack HJ, Ritzl A, Fink GR et al (2002) MR imaging in acute stroke: diffusion-weighted and perfusion imaging parameters for predicting infarct size. Radiology 222:397–403CrossRefPubMed
Metadata
Title
Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery
Authors
Yu Luo
Zhongying Gong
Yongming Zhou
Binge Chang
Chao Chai
Taiyuan Liu
Yanhong Han
Meiyun Wang
Tianyi Qian
E Mark Haacke
Shuang Xia
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4593-y

Other articles of this Issue 6/2017

European Radiology 6/2017 Go to the issue