Skip to main content
Top
Published in: European Radiology 11/2016

Open Access 01-11-2016 | Breast

The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies

Authors: Michelle Heijblom, Daniele Piras, Frank M. van den Engh, Margreet van der Schaaf, Joost M. Klaase, Wiendelt Steenbergen, Srirang Manohar

Published in: European Radiology | Issue 11/2016

Login to get access

Abstract

Objectives

Photoacoustic mammography is potentially an ideal technique, however, the amount of patient data is limited. To further our understanding of the in vivo performance of the method and to guide further research and development, we imaged 33 breast malignancies using the research system – the Twente Photoacoustic Mammoscope (PAM).

Methods

Thirty-one patients participated in this retrospective, observational study. The study and informed consent procedure were approved by the local ethics committee. PAM uses 1,064 nm light for excitation with a planar, 588-element, 1-MHz ultrasound array for detection. Photoacoustic lesion visibility and appearance were compared with conventional imaging (x-ray mammography and ultrasonography) findings, histopathology and patient demographics.

Results

Of 33 malignancies 32 were visualized with high contrast and good co-localization with conventional imaging. The contrast of the detected malignancies was independent of radiographic breast density, and size estimation was reasonably good with an average 28 % deviation from histology. However, the presence of contrast areas outside the malignant region is suggestive for low specificity of the current system. Statistical analyses did not reveal any further relationship between PAM results and patient demographics nor lesion characteristics.

Conclusions

The results confirm the high potential of photoacoustic mammography in future breast care.

Key Points

• Photoacoustic breast imaging visualizes malignancies with high imaging contrast.
• Photoacoustic lesion contrast is independent of the mammographically estimated breast density.
• No clear relationship exists between photoacoustic characteristics and lesion type, grade, etc.
• Photoacoustic specificity to breast cancer from some cases is not yet optimal.
Literature
1.
2.
go back to reference DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA-A Canc J Clin 61(6):409–418 DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA-A Canc J Clin 61(6):409–418
3.
go back to reference Zografos G, Koulocheri D, Liakou P et al (2013) Novel technology of multimodal ultrasound tomography detects breast lesions. Eur Radiol 23(3):673–683CrossRefPubMed Zografos G, Koulocheri D, Liakou P et al (2013) Novel technology of multimodal ultrasound tomography detects breast lesions. Eur Radiol 23(3):673–683CrossRefPubMed
4.
go back to reference Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134(3):923–931CrossRefPubMed Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134(3):923–931CrossRefPubMed
5.
go back to reference Jochelson MS, Dershaw DD, Sung JS et al (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266(3):743–751CrossRefPubMed Jochelson MS, Dershaw DD, Sung JS et al (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266(3):743–751CrossRefPubMed
6.
go back to reference Linden HM, Dehdashti F (2013) Novel methods and tracers for breast cancer imaging. Semin Nucl Med 43(4):324–329CrossRefPubMed Linden HM, Dehdashti F (2013) Novel methods and tracers for breast cancer imaging. Semin Nucl Med 43(4):324–329CrossRefPubMed
7.
go back to reference Grzegorczyk TM, Meaney PM, Kaufman PA, diFlorio-Alexander RM, Paulsen KD (2012) Fast 3-D tomographic microwave imaging for breast cancer detection. IEEE Trans Med Imag 31(8):1584–1592CrossRef Grzegorczyk TM, Meaney PM, Kaufman PA, diFlorio-Alexander RM, Paulsen KD (2012) Fast 3-D tomographic microwave imaging for breast cancer detection. IEEE Trans Med Imag 31(8):1584–1592CrossRef
8.
go back to reference Fantini S, Sassaroli A (2012) Near-infrared optical mammography for breast cancer detection with intrinsic contrast. Ann Biomed Eng 40(2):398–407CrossRefPubMed Fantini S, Sassaroli A (2012) Near-infrared optical mammography for breast cancer detection with intrinsic contrast. Ann Biomed Eng 40(2):398–407CrossRefPubMed
9.
10.
go back to reference Lutzweiler C, Razansky D (2013) Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13(6):7345–7384CrossRefPubMedPubMedCentral Lutzweiler C, Razansky D (2013) Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13(6):7345–7384CrossRefPubMedPubMedCentral
12.
go back to reference Xia W, Steenbergen W, Manohar S (2014) Photoacoustic mammography: prospects and promises. Breast Canc Manag 3(5):387–390CrossRef Xia W, Steenbergen W, Manohar S (2014) Photoacoustic mammography: prospects and promises. Breast Canc Manag 3(5):387–390CrossRef
13.
go back to reference Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse Spec Iss 6(3):42–46CrossRef Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse Spec Iss 6(3):42–46CrossRef
14.
16.
go back to reference Kitai T, Torii M, Sugie T et al (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153CrossRefPubMed Kitai T, Torii M, Sugie T et al (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153CrossRefPubMed
17.
go back to reference Li X, Heldermon CD, Yao L, Xi L, Jiang H (2015) High resolution functional photoacoustic tomography of breast cancer. Med Phys 42(9):5321–5328CrossRefPubMed Li X, Heldermon CD, Yao L, Xi L, Jiang H (2015) High resolution functional photoacoustic tomography of breast cancer. Med Phys 42(9):5321–5328CrossRefPubMed
19.
go back to reference Beard P (2011) Biomedical photoacoustic imaging. Interfac Foc 1(4):602–631CrossRef Beard P (2011) Biomedical photoacoustic imaging. Interfac Foc 1(4):602–631CrossRef
20.
go back to reference Wang J, Pogue BW, Jiang SD, Paulsen KD (2010) Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and cw measurement. Opt Lett 35(1):82–84CrossRefPubMedPubMedCentral Wang J, Pogue BW, Jiang SD, Paulsen KD (2010) Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and cw measurement. Opt Lett 35(1):82–84CrossRefPubMedPubMedCentral
21.
go back to reference Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N (2009) Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res 69(7):2919–2926CrossRefPubMedPubMedCentral Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N (2009) Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res 69(7):2919–2926CrossRefPubMedPubMedCentral
23.
go back to reference Chung SH, Cerussi AE, Klifa C et al (2008) In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy. Phys Med Biol 53(23):6713–6727CrossRefPubMedPubMedCentral Chung SH, Cerussi AE, Klifa C et al (2008) In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy. Phys Med Biol 53(23):6713–6727CrossRefPubMedPubMedCentral
24.
go back to reference Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4) Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4)
25.
go back to reference Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110(5):2783–2794CrossRefPubMed Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110(5):2783–2794CrossRefPubMed
26.
go back to reference Taruttis A, van Dam GM, Ntziachristos V (2015) Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res 75(8):1548–1559CrossRefPubMed Taruttis A, van Dam GM, Ntziachristos V (2015) Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res 75(8):1548–1559CrossRefPubMed
27.
go back to reference Ermilov SA, Khamapirad T, Conjusteau A et al. (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14(2):024007 Ermilov SA, Khamapirad T, Conjusteau A et al. (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14(2):024007
28.
go back to reference Heijblom M, Piras D, Xia W et al (2012) Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express 20(11):11582–11597CrossRefPubMed Heijblom M, Piras D, Xia W et al (2012) Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express 20(11):11582–11597CrossRefPubMed
29.
go back to reference Manohar S, Vaartjes SE, van Hespen JC et al (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285CrossRefPubMed Manohar S, Vaartjes SE, van Hespen JC et al (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285CrossRefPubMed
30.
go back to reference Manohar S, Kharine A, van Hespen JCG, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50:2543–2557CrossRefPubMed Manohar S, Kharine A, van Hespen JCG, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50:2543–2557CrossRefPubMed
31.
go back to reference Piras D, Xia WF, Steenbergen W, van Leeuwen TG, Manohar S (2010) Photoacoustic imaging of the breast using the twente photoacoustic Mammoscope: present status and future perspectives. IEEE J Select Topic Quant Electron 16(4):730–739CrossRef Piras D, Xia WF, Steenbergen W, van Leeuwen TG, Manohar S (2010) Photoacoustic imaging of the breast using the twente photoacoustic Mammoscope: present status and future perspectives. IEEE J Select Topic Quant Electron 16(4):730–739CrossRef
32.
go back to reference Heijblom M, Piras D, Brinkhuis M et al (2015) Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci Rep 5:11778CrossRefPubMedPubMedCentral Heijblom M, Piras D, Brinkhuis M et al (2015) Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci Rep 5:11778CrossRefPubMedPubMedCentral
33.
go back to reference The ACR Breast Imaging Reporting and Data System (BIRADS). 2003 [cited 2013 July]; Available from: www.acr.org. The ACR Breast Imaging Reporting and Data System (BIRADS). 2003 [cited 2013 July]; Available from: www.​acr.​org.
34.
go back to reference Ciatto S, Houssami N, Apruzzese A et al (2005) Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 14(4):269–275CrossRefPubMed Ciatto S, Houssami N, Apruzzese A et al (2005) Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 14(4):269–275CrossRefPubMed
35.
go back to reference Carp SA, Sajjadi AY, Wanyo CM et al (2013) Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system. Biomed Opt Expr 4(12):2911–2924CrossRef Carp SA, Sajjadi AY, Wanyo CM et al (2013) Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system. Biomed Opt Expr 4(12):2911–2924CrossRef
36.
go back to reference Commission, I E (Edition 1:1993 consolidated with amendments 1:1997 and 2:2001) International standard, Safety of laser products, IEC 60825-1:1993+A1:1997+A2:2001, in Part 1: Equipment classification, requirements and user’s guideInternational Electrotechnical Commission: Geneva, Switzerland Commission, I E (Edition 1:1993 consolidated with amendments 1:1997 and 2:2001) International standard, Safety of laser products, IEC 60825-1:1993+A1:1997+A2:2001, in Part 1: Equipment classification, requirements and user’s guideInternational Electrotechnical Commission: Geneva, Switzerland
37.
go back to reference Bloom HJ, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11(3):359–377CrossRefPubMedPubMedCentral Bloom HJ, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11(3):359–377CrossRefPubMedPubMedCentral
38.
go back to reference Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur J Cancer 46(8):1296–1316CrossRefPubMed Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur J Cancer 46(8):1296–1316CrossRefPubMed
39.
go back to reference Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S (2011) Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat 10(6):607–623PubMed Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S (2011) Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat 10(6):607–623PubMed
40.
go back to reference Heijblom M, Piras D, Maartens E et al (2013) Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation. J Biomed Opt 18(12):126009CrossRefPubMed Heijblom M, Piras D, Maartens E et al (2013) Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation. J Biomed Opt 18(12):126009CrossRefPubMed
41.
go back to reference Li CI, Anderson BO, Daling JR, Moe RE (2003) Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA-J Am Med Assoc 289(11):1421–1424CrossRef Li CI, Anderson BO, Daling JR, Moe RE (2003) Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA-J Am Med Assoc 289(11):1421–1424CrossRef
42.
go back to reference Lopez JK, Bassett LW (2009) Invasive lobular carcinoma of the breast: spectrum of mammographic, US, and MR imaging findings. Radiographics 29(1):165–176CrossRefPubMed Lopez JK, Bassett LW (2009) Invasive lobular carcinoma of the breast: spectrum of mammographic, US, and MR imaging findings. Radiographics 29(1):165–176CrossRefPubMed
43.
go back to reference Pestalozzi BC, Zahrieh D, Mallon E et al (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26(18):3006–3014CrossRefPubMed Pestalozzi BC, Zahrieh D, Mallon E et al (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26(18):3006–3014CrossRefPubMed
44.
go back to reference Cocquyt V, Van Belle S (2005) Lobular carcinoma in situ and invasive lobular cancer of the breast. Curr Opin Obstet Gynecol 17(1):55–60CrossRefPubMed Cocquyt V, Van Belle S (2005) Lobular carcinoma in situ and invasive lobular cancer of the breast. Curr Opin Obstet Gynecol 17(1):55–60CrossRefPubMed
45.
go back to reference Bolat F, Kayaselcuk F, Nursal TZ, Yagmurdur MC, Bal N, Demirhan B (2006) Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25(3):365–372PubMed Bolat F, Kayaselcuk F, Nursal TZ, Yagmurdur MC, Bal N, Demirhan B (2006) Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25(3):365–372PubMed
46.
go back to reference Vamesu S (2008) Angiogenesis and tumor histologic type in primary breast cancer patients: an analysis of 155 needle core biopsies. Rom J Morphol Embryol 49(2):181–188PubMed Vamesu S (2008) Angiogenesis and tumor histologic type in primary breast cancer patients: an analysis of 155 needle core biopsies. Rom J Morphol Embryol 49(2):181–188PubMed
47.
go back to reference Boetes C, Veltman J, van Die L, Bult P, Wobbes T, Barentsz JO (2004) The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat 86(1):31–37CrossRefPubMed Boetes C, Veltman J, van Die L, Bult P, Wobbes T, Barentsz JO (2004) The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat 86(1):31–37CrossRefPubMed
48.
go back to reference Taroni P, Pifferi A, Quarto G et al (2010) Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy. J Biomed Opt 15(6) Taroni P, Pifferi A, Quarto G et al (2010) Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy. J Biomed Opt 15(6)
49.
go back to reference Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440(6):583–588CrossRefPubMed Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440(6):583–588CrossRefPubMed
50.
go back to reference Nachabé R, Evers DJ, Hendriks BHW et al (2011) Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt 16(8):087010-1:12 Nachabé R, Evers DJ, Hendriks BHW et al (2011) Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt 16(8):087010-1:12
51.
go back to reference van Veen RLP, Amelink A, Menke-Pluymers M, van der Pol C, Sterenborg HJCM (2005) Optical biopsy of breast tissue using differential path-length spectroscopy. Phys Med Biol 50(11):2573–2581CrossRefPubMed van Veen RLP, Amelink A, Menke-Pluymers M, van der Pol C, Sterenborg HJCM (2005) Optical biopsy of breast tissue using differential path-length spectroscopy. Phys Med Biol 50(11):2573–2581CrossRefPubMed
Metadata
Title
The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies
Authors
Michelle Heijblom
Daniele Piras
Frank M. van den Engh
Margreet van der Schaaf
Joost M. Klaase
Wiendelt Steenbergen
Srirang Manohar
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4240-7

Other articles of this Issue 11/2016

European Radiology 11/2016 Go to the issue