Skip to main content
Top
Published in: European Radiology 10/2016

01-10-2016 | Computed Tomography

Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

Authors: Achille Mileto, Keitaro Sofue, Daniele Marin

Published in: European Radiology | Issue 10/2016

Login to get access

Abstract

Objective

Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons.

Conclusion

Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum.

Key points

Optimal protocols must be adopted for leveraging dual-energy benefits in renal imaging.
Virtual monochromatic imaging can overcome renal cyst pseudoenhancement.
Iodine maps help to interpret renal lesions incompletely characterised at traditional MDCT.
Interpretative traps need to be weighed-up in dual-energy renal lesions imaging.
Technical advances are expanding the dual-energy applications spectrum for renal lesions imaging.
Literature
2.
go back to reference Silverman SG, Israel GM, Trinh QD (2015) Incompletely characterized incidental renal masses: emerging data support conservative management. Radiology 275:28–42CrossRefPubMed Silverman SG, Israel GM, Trinh QD (2015) Incompletely characterized incidental renal masses: emerging data support conservative management. Radiology 275:28–42CrossRefPubMed
3.
go back to reference Hecht EM, Israel GM, Krinsky GA et al (2004) Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232:373–378CrossRefPubMed Hecht EM, Israel GM, Krinsky GA et al (2004) Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232:373–378CrossRefPubMed
4.
go back to reference Hindman NM (2015) Approach to very small (<1.5 cm) cystic renal lesions: Ignore, observe, or treat? AJR Am J Roentgenol 204:1182–1189CrossRefPubMed Hindman NM (2015) Approach to very small (<1.5 cm) cystic renal lesions: Ignore, observe, or treat? AJR Am J Roentgenol 204:1182–1189CrossRefPubMed
5.
go back to reference Israel GM, Bosniak MA (2008) Pitfalls in renal mass evaluation and how to avoid them. Radiographics 28:1325–1338CrossRefPubMed Israel GM, Bosniak MA (2008) Pitfalls in renal mass evaluation and how to avoid them. Radiographics 28:1325–1338CrossRefPubMed
6.
go back to reference Hindman NM, Hecht EM, Bosniak MA (2014) Follow-up for Bosniak category 2F cystic renal lesions. Radiology 272:757–766CrossRefPubMed Hindman NM, Hecht EM, Bosniak MA (2014) Follow-up for Bosniak category 2F cystic renal lesions. Radiology 272:757–766CrossRefPubMed
7.
go back to reference Jonisch AI, Rubinowitz AN, Mutalik PG, Israel GM (2007) Can high-attenuation renal cysts be differentiated from renal cell carcinoma at unenhanced CT? Radiology 243:445–450CrossRefPubMed Jonisch AI, Rubinowitz AN, Mutalik PG, Israel GM (2007) Can high-attenuation renal cysts be differentiated from renal cell carcinoma at unenhanced CT? Radiology 243:445–450CrossRefPubMed
8.
go back to reference Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371CrossRefPubMed Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371CrossRefPubMed
10.
go back to reference Jinzaki M, McTavish JD, Zou KH, Judy PF, Silverman SG (2004) Evaluation of small (≤3 cm) renal masses with MDCT: benefits of thin overlapping reconstructions. AJR Am J Roentgenol 183:1223–1228CrossRef Jinzaki M, McTavish JD, Zou KH, Judy PF, Silverman SG (2004) Evaluation of small (≤3 cm) renal masses with MDCT: benefits of thin overlapping reconstructions. AJR Am J Roentgenol 183:1223–1228CrossRef
11.
go back to reference Pandharipande PV, Gervais DA, Hartman RI et al (2010) Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology 256:836–846CrossRefPubMedPubMedCentral Pandharipande PV, Gervais DA, Hartman RI et al (2010) Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology 256:836–846CrossRefPubMedPubMedCentral
12.
go back to reference Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin N Am 47:41–57CrossRefPubMed Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin N Am 47:41–57CrossRefPubMed
13.
go back to reference McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMedPubMedCentral McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMedPubMedCentral
14.
go back to reference Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterisation of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295CrossRefPubMed Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterisation of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295CrossRefPubMed
15.
go back to reference Neville AM, Gupta RJ, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183CrossRefPubMed Neville AM, Gupta RJ, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183CrossRefPubMed
16.
go back to reference Kaza R, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381CrossRefPubMed Kaza R, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381CrossRefPubMed
17.
go back to reference Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterisation of renal masses as benign or malignant. Investig Radiol 45:399–405 Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterisation of renal masses as benign or malignant. Investig Radiol 45:399–405
18.
go back to reference Ascenti G, Krauss B, Mazziotti S et al (2012) Dual-energy computed tomography (DECT) in renal masses: nonlinear versus linear blending. Acad Radiol 19:1186–1193CrossRefPubMed Ascenti G, Krauss B, Mazziotti S et al (2012) Dual-energy computed tomography (DECT) in renal masses: nonlinear versus linear blending. Acad Radiol 19:1186–1193CrossRefPubMed
19.
go back to reference Song KD, Kim CK, Park BK, Kim B (2011) Utility of iodine overlay technique and virtual unenhanced images for the characterisation of renal masses by dual-energy CT. AJR Am J Roentgenol 197:1076–1082CrossRef Song KD, Kim CK, Park BK, Kim B (2011) Utility of iodine overlay technique and virtual unenhanced images for the characterisation of renal masses by dual-energy CT. AJR Am J Roentgenol 197:1076–1082CrossRef
20.
go back to reference Ascenti G, Mileto A, Gaeta M, Blandino A, Mazziotti S, Scribano E (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68:87–94CrossRef Ascenti G, Mileto A, Gaeta M, Blandino A, Mazziotti S, Scribano E (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68:87–94CrossRef
21.
go back to reference Arndt N, Staehler M, Siegert S, Reiser MF, Graser A (2012) Dual-energy CT in patients with polycystic kidney disease. Eur Radiol 22:2125–2129CrossRefPubMed Arndt N, Staehler M, Siegert S, Reiser MF, Graser A (2012) Dual-energy CT in patients with polycystic kidney disease. Eur Radiol 22:2125–2129CrossRefPubMed
22.
go back to reference Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295CrossRefPubMed Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295CrossRefPubMed
23.
go back to reference Megibow AJ, Sahani DV (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR Am J Roentgenol 199:S71–S77CrossRefPubMed Megibow AJ, Sahani DV (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR Am J Roentgenol 199:S71–S77CrossRefPubMed
24.
go back to reference Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271:327–342CrossRefPubMed Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271:327–342CrossRefPubMed
25.
go back to reference Mileto A, Marin D, Nelson RC, Ascenti G, Boll DT (2014) Dual-energy MDCT assessment of renal lesions: an overview. Eur Radiol 24:353–362CrossRefPubMed Mileto A, Marin D, Nelson RC, Ascenti G, Boll DT (2014) Dual-energy MDCT assessment of renal lesions: an overview. Eur Radiol 24:353–362CrossRefPubMed
26.
go back to reference Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440CrossRefPubMed Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440CrossRefPubMed
27.
go back to reference Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034CrossRefPubMed Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034CrossRefPubMed
28.
go back to reference Mileto A, Marin D, Ramirez-Giraldo JC (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202:W466–W474CrossRefPubMed Mileto A, Marin D, Ramirez-Giraldo JC (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202:W466–W474CrossRefPubMed
29.
go back to reference Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700CrossRefPubMed Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700CrossRefPubMed
30.
go back to reference Mileto A, Nelson RC, Samei E et al (2014) Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology 272:767–776CrossRefPubMed Mileto A, Nelson RC, Samei E et al (2014) Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology 272:767–776CrossRefPubMed
31.
go back to reference Leng S, Yu L, Fletcher JG, McCollough CH (2015) Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology 276:562–570CrossRefPubMedPubMedCentral Leng S, Yu L, Fletcher JG, McCollough CH (2015) Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology 276:562–570CrossRefPubMedPubMedCentral
32.
go back to reference Jung DC, Oh YT, Kim MD, Park M (2012) Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR Am J Roentgenol 199:1316–1319CrossRefPubMed Jung DC, Oh YT, Kim MD, Park M (2012) Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR Am J Roentgenol 199:1316–1319CrossRefPubMed
33.
go back to reference Takeuchi M, Kawai T, Ito M et al (2012) Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction. Eur J Radiol 81:3160–3165CrossRefPubMed Takeuchi M, Kawai T, Ito M et al (2012) Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction. Eur J Radiol 81:3160–3165CrossRefPubMed
34.
go back to reference Karlo CA, Gnannt R, Winklehner A et al (2013) Split-bolus dual-energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging 38:1136–1143CrossRefPubMed Karlo CA, Gnannt R, Winklehner A et al (2013) Split-bolus dual-energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging 38:1136–1143CrossRefPubMed
35.
go back to reference Chen CY, Hsu JS, Jaw TS et al (2015) Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol 205:W492–W501CrossRefPubMed Chen CY, Hsu JS, Jaw TS et al (2015) Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol 205:W492–W501CrossRefPubMed
36.
go back to reference Hansen C, Becker CD, Montet X, Botsikas D (2014) Diagnosis of urothelial tumors with a dedicated dual-source dual-energy MDCT protocol: preliminary results. AJR Am J Roentgenol 202:W357–W364CrossRefPubMed Hansen C, Becker CD, Montet X, Botsikas D (2014) Diagnosis of urothelial tumors with a dedicated dual-source dual-energy MDCT protocol: preliminary results. AJR Am J Roentgenol 202:W357–W364CrossRefPubMed
37.
go back to reference Mileto A, Nelson RC, Paulson EK, Marin D (2015) Dual-energy MDCT for imaging the renal mass. AJR Am J Roentgenol 204:W640–W647CrossRefPubMed Mileto A, Nelson RC, Paulson EK, Marin D (2015) Dual-energy MDCT for imaging the renal mass. AJR Am J Roentgenol 204:W640–W647CrossRefPubMed
38.
go back to reference Hartman R, Kawashima A, Takahashi N et al (2012) Applications of dual-energy CT in urologic imaging: an update. Radiol Clin N Am 50:191–205CrossRefPubMed Hartman R, Kawashima A, Takahashi N et al (2012) Applications of dual-energy CT in urologic imaging: an update. Radiol Clin N Am 50:191–205CrossRefPubMed
39.
go back to reference Mileto A, Marin D, Alfaro-Cordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820CrossRefPubMed Mileto A, Marin D, Alfaro-Cordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820CrossRefPubMed
40.
go back to reference Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38:6371–6379CrossRefPubMedPubMedCentral Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38:6371–6379CrossRefPubMedPubMedCentral
41.
go back to reference Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelrieß M (2015) Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts? Med Phys 42:1023–1036CrossRefPubMed Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelrieß M (2015) Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts? Med Phys 42:1023–1036CrossRefPubMed
42.
go back to reference Marin D, Fananapazir G, Mileto A, Choudhury KR, Wilson JM, Nelson RC (2014) Dual-energy multi-detector row CT with virtual monochromatic imaging for improving patient-to-patient uniformity of aortic enhancement during CT angiography: an in vitro and in vivo study. Radiology 272:895–902CrossRefPubMed Marin D, Fananapazir G, Mileto A, Choudhury KR, Wilson JM, Nelson RC (2014) Dual-energy multi-detector row CT with virtual monochromatic imaging for improving patient-to-patient uniformity of aortic enhancement during CT angiography: an in vitro and in vivo study. Radiology 272:895–902CrossRefPubMed
43.
go back to reference Mileto A, Nelson RC, Samei E et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203:1257–1264CrossRefPubMed Mileto A, Nelson RC, Samei E et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203:1257–1264CrossRefPubMed
44.
go back to reference Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609CrossRefPubMedPubMedCentral Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609CrossRefPubMedPubMedCentral
45.
go back to reference Yamada Y, Yamada M, Sugisawa K et al (2015) Renal cyst pseudoenhancement: intraindividual comparison between virtual monochromatic spectral images and conventional polychromatic 120-kVp images obtained during the same CT examination and comparisons among images reconstructed using filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Medicine 94:e754CrossRefPubMedPubMedCentral Yamada Y, Yamada M, Sugisawa K et al (2015) Renal cyst pseudoenhancement: intraindividual comparison between virtual monochromatic spectral images and conventional polychromatic 120-kVp images obtained during the same CT examination and comparisons among images reconstructed using filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Medicine 94:e754CrossRefPubMedPubMedCentral
46.
go back to reference Guimarães LS, Fletcher JG, Harmsen WS et al (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742CrossRefPubMed Guimarães LS, Fletcher JG, Harmsen WS et al (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742CrossRefPubMed
48.
go back to reference Megibow AJ, Chandarana H, Hindman NM (2014) Increasing the precision of CT measurements with dual-energy scanning. Radiology 272:618–621CrossRefPubMed Megibow AJ, Chandarana H, Hindman NM (2014) Increasing the precision of CT measurements with dual-energy scanning. Radiology 272:618–621CrossRefPubMed
49.
go back to reference Wortman, J, Fulwadhva, U, Bonci, G, Primak, A, Miracle, H, Sodickson A (2014) Quantification of iodine enhancement using dual energy CT: internal normalization minimizes physiologic variation between patients. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago IL. http://archive.rsna.org/2014/14006917.html. Accessed 14 Oct 2015 Wortman, J, Fulwadhva, U, Bonci, G, Primak, A, Miracle, H, Sodickson A (2014) Quantification of iodine enhancement using dual energy CT: internal normalization minimizes physiologic variation between patients. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago IL. http://​archive.​rsna.​org/​2014/​14006917.​html. Accessed 14 Oct 2015
50.
go back to reference Marin D, Pratts-Emanuelli JJ, Mileto A et al (2015) Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT. Eur Radiol 25:679–686CrossRefPubMed Marin D, Pratts-Emanuelli JJ, Mileto A et al (2015) Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT. Eur Radiol 25:679–686CrossRefPubMed
51.
go back to reference Mileto A, Barina A, Marin D et al (2015) Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. doi:10.1148/radiol.2015150919 Mileto A, Barina A, Marin D et al (2015) Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. doi:10.​1148/​radiol.​2015150919
52.
go back to reference Brufau BP, Cerqueda CS, Villalba LB, Izquierdo RS, González BM, Molina CN (2013) Metastatic renal cell carcinoma: radiologic findings and assessment of response to targeted antiangiogenic therapy by using multidetector CT. Radiographics 33:1691–1716CrossRefPubMed Brufau BP, Cerqueda CS, Villalba LB, Izquierdo RS, González BM, Molina CN (2013) Metastatic renal cell carcinoma: radiologic findings and assessment of response to targeted antiangiogenic therapy by using multidetector CT. Radiographics 33:1691–1716CrossRefPubMed
53.
go back to reference Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261:165–171CrossRefPubMed Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261:165–171CrossRefPubMed
54.
go back to reference Morgan DE, Weber AC, Lockhart ME, Weber TM, Fineberg NS, Berland LL (2013) Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT. J Comput Assist Tomogr 37:937–943CrossRefPubMed Morgan DE, Weber AC, Lockhart ME, Weber TM, Fineberg NS, Berland LL (2013) Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT. J Comput Assist Tomogr 37:937–943CrossRefPubMed
55.
go back to reference Mileto A, Nelson RC, Marin D, Roy Choudhury K, Ho LM (2015) Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis. Radiology 274:445–454CrossRefPubMed Mileto A, Nelson RC, Marin D, Roy Choudhury K, Ho LM (2015) Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis. Radiology 274:445–454CrossRefPubMed
56.
go back to reference Glazer DI, Maturen KE, Kaza RK et al (2014) Adrenal incidentaloma triage with single-source (fast-kilovoltage switch) dual-energy CT. AJR Am J Roentgenol 203:329–335CrossRefPubMedPubMedCentral Glazer DI, Maturen KE, Kaza RK et al (2014) Adrenal incidentaloma triage with single-source (fast-kilovoltage switch) dual-energy CT. AJR Am J Roentgenol 203:329–335CrossRefPubMedPubMedCentral
57.
go back to reference Cormode DP, Skajaa T, Fayad ZA, Mulder WJ (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000CrossRefPubMed Cormode DP, Skajaa T, Fayad ZA, Mulder WJ (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000CrossRefPubMed
58.
go back to reference Ashton JR, Clark DP, Moding EJ et al (2014) Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One 9:e88129CrossRefPubMedPubMedCentral Ashton JR, Clark DP, Moding EJ et al (2014) Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One 9:e88129CrossRefPubMedPubMedCentral
59.
go back to reference Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP et al (2012) Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS One 7:e34496CrossRefPubMedPubMedCentral Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP et al (2012) Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS One 7:e34496CrossRefPubMedPubMedCentral
Metadata
Title
Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?
Authors
Achille Mileto
Keitaro Sofue
Daniele Marin
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4180-7

Other articles of this Issue 10/2016

European Radiology 10/2016 Go to the issue