Skip to main content
Top
Published in: European Radiology 8/2016

01-08-2016 | Neuro

Quantitative validation of a visual rating scale for frontal atrophy: associations with clinical status, APOE e4, CSF biomarkers and cognition

Authors: Daniel Ferreira, Lena Cavallin, Tobias Granberg, Olof Lindberg, Carlos Aguilar, Patrizia Mecocci, Bruno Vellas, Magda Tsolaki, Iwona Kłoszewska, Hilkka Soininen, Simon Lovestone, Andrew Simmons, Lars-Olof Wahlund, Eric Westman, for the AddNeuroMed consortium and for the Alzheimer’s Disease Neuroimaging Initiative*

Published in: European Radiology | Issue 8/2016

Login to get access

Abstract

Objectives

To validate a visual rating scale of frontal atrophy with quantitative imaging and study its association with clinical status, APOE ε4, CSF biomarkers, and cognition.

Methods

The AddNeuroMed and ADNI cohorts were combined giving a total of 329 healthy controls, 421 mild cognitive impairment patients, and 286 Alzheimer’s disease (AD) patients. Thirty-four patients with frontotemporal dementia (FTD) were also included. Frontal atrophy was assessed with the frontal sub-scale of the global cortical atrophy scale (GCA-F) on T1-weighted images. Automated imaging markers of cortical volume, thickness, and surface area were evaluated. Manual tracing was also performed.

Results

The GCA-F scale reliably reflects frontal atrophy, with orbitofrontal, dorsolateral, and motor cortices being the regions contributing most to the GCA-F ratings. GCA-F primarily reflects reductions in cortical volume and thickness, although it was able to detect reductions in surface area too. The scale showed significant associations with clinical status and cognition.

Conclusion

The GCA-F scale may have implications for clinical practice as supportive diagnostic tool for disorders demonstrating predominant frontal atrophy such as FTD and the executive presentation of AD. We believe that GCA-F is feasible for use in clinical routine for the radiological assessment of dementia and other disorders.

Key points

The GCA-F visual rating scale reliably reflects frontal brain atrophy.
Orbitofrontal, dorsolateral, and motor cortices are the most contributing regions.
GCA-F shows significant associations with clinical status and cognition.
GCA-F may be supportive diagnostic tool for disorders demonstrating predominant frontal atrophy.
GCA-F may be feasible for use in radiological routine.
Appendix
Available only for authorised users
Literature
1.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269CrossRefPubMedPubMedCentral
2.
go back to reference Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972CrossRefPubMedPubMedCentral Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972CrossRefPubMedPubMedCentral
3.
go back to reference Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746CrossRefPubMed Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746CrossRefPubMed
4.
go back to reference Shim YS, Youn YC, Na DL et al (2011) Effects of medial temporal atrophy and white matter hyperintensities on the cognitive functions in patients with Alzheimer’s disease. Eur Neurol 66:75–82CrossRefPubMed Shim YS, Youn YC, Na DL et al (2011) Effects of medial temporal atrophy and white matter hyperintensities on the cognitive functions in patients with Alzheimer’s disease. Eur Neurol 66:75–82CrossRefPubMed
5.
go back to reference Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21CrossRefPubMed Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21CrossRefPubMed
6.
go back to reference Deweer B, Lehericy S, Pillon B et al (1995) Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry 58:590–597CrossRefPubMedPubMedCentral Deweer B, Lehericy S, Pillon B et al (1995) Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry 58:590–597CrossRefPubMedPubMedCentral
7.
go back to reference Koedam EL, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625CrossRefPubMedPubMedCentral Koedam EL, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625CrossRefPubMedPubMedCentral
8.
go back to reference Lehmann M, Koedam EL, Barnes J et al (2012) Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 33:627.e1–627.e12CrossRef Lehmann M, Koedam EL, Barnes J et al (2012) Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 33:627.e1–627.e12CrossRef
10.
go back to reference Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P (1996) Inter-and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36:268–272CrossRefPubMed Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P (1996) Inter-and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36:268–272CrossRefPubMed
11.
go back to reference Scheltens P, Pasquier F, Weerts JG, Barkhof F, Leys D (1997) Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 37:95–99CrossRefPubMed Scheltens P, Pasquier F, Weerts JG, Barkhof F, Leys D (1997) Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 37:95–99CrossRefPubMed
12.
go back to reference Henneman WJP, Vrenken H, Barnes J et al (2009) Baseline CSF p-tau levels independently predict progression of hippocampal atrophy in Alzheimer disease. Neurology 73:935–940CrossRefPubMedPubMedCentral Henneman WJP, Vrenken H, Barnes J et al (2009) Baseline CSF p-tau levels independently predict progression of hippocampal atrophy in Alzheimer disease. Neurology 73:935–940CrossRefPubMedPubMedCentral
13.
go back to reference Van der Vlies AE, Goos JDC, Barkhof F, Scheltens P, van der Flier WM (2012) Microbleeds do not affect rate of cognitive decline in Alzheimer disease. Neurology 79:763–769CrossRefPubMed Van der Vlies AE, Goos JDC, Barkhof F, Scheltens P, van der Flier WM (2012) Microbleeds do not affect rate of cognitive decline in Alzheimer disease. Neurology 79:763–769CrossRefPubMed
14.
go back to reference Doody RS, Azher SN, Haykal HA, Dunn JK, Liao T, Schneider L (2000) Does APO 4 correlate with MRI changes in Alzheimer’s disease? J Neurol Neurosurg Psychiatry 69:668–671CrossRefPubMedPubMedCentral Doody RS, Azher SN, Haykal HA, Dunn JK, Liao T, Schneider L (2000) Does APO 4 correlate with MRI changes in Alzheimer’s disease? J Neurol Neurosurg Psychiatry 69:668–671CrossRefPubMedPubMedCentral
15.
go back to reference Biessels GJ, De Leeuw F-E, Lindeboom J, Barkhof F, Scheltens P (2006) Increased cortical atrophy in patients with Alzheimer’s disease and type 2 diabetes mellitus. J Neurol Neurosurg Psychiatry 77:304–307CrossRefPubMedPubMedCentral Biessels GJ, De Leeuw F-E, Lindeboom J, Barkhof F, Scheltens P (2006) Increased cortical atrophy in patients with Alzheimer’s disease and type 2 diabetes mellitus. J Neurol Neurosurg Psychiatry 77:304–307CrossRefPubMedPubMedCentral
16.
go back to reference Goos JDC, Kester MI, Barkhof F et al (2009) Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40:3455–3460CrossRefPubMed Goos JDC, Kester MI, Barkhof F et al (2009) Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40:3455–3460CrossRefPubMed
17.
go back to reference Kim Y-S, Lee K-M, Choi BH, Sohn EH, Lee AY (2009) Relation between the clock drawing test (CDT) and structural changes of brain in dementia. Arch Gerontol Geriatr 48:218–221CrossRefPubMed Kim Y-S, Lee K-M, Choi BH, Sohn EH, Lee AY (2009) Relation between the clock drawing test (CDT) and structural changes of brain in dementia. Arch Gerontol Geriatr 48:218–221CrossRefPubMed
18.
go back to reference Ferreira D, Cavallin L, Larsson E-M, et al. (2015) Practical cut-offs for visual rating scales of medial temporal, frontal, and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 278:277–290 Ferreira D, Cavallin L, Larsson E-M, et al. (2015) Practical cut-offs for visual rating scales of medial temporal, frontal, and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 278:277–290
19.
go back to reference Möller C, van der Flier WM, Versteeg A et al (2014) Quantitative regional validation of the visual rating scale for posterior cortical atrophy. Eur Radiol 24:397–404CrossRefPubMed Möller C, van der Flier WM, Versteeg A et al (2014) Quantitative regional validation of the visual rating scale for posterior cortical atrophy. Eur Radiol 24:397–404CrossRefPubMed
20.
go back to reference Bresciani L, Rossi R, Testa C et al (2005) Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clin Exp Res 17:8–13CrossRefPubMed Bresciani L, Rossi R, Testa C et al (2005) Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clin Exp Res 17:8–13CrossRefPubMed
21.
go back to reference Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, Hodges JR (2009) Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 51:491–503CrossRefPubMed Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, Hodges JR (2009) Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 51:491–503CrossRefPubMed
22.
go back to reference Simmons A, Westman E, Muehlboeck S et al (2011) The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer’s disease: experience from the first 24 months. Int J Geriatr Psychiatry 26:75–82CrossRefPubMed Simmons A, Westman E, Muehlboeck S et al (2011) The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer’s disease: experience from the first 24 months. Int J Geriatr Psychiatry 26:75–82CrossRefPubMed
23.
go back to reference Mueller SG, Weiner MW, Thal LJ et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66CrossRefPubMedPubMedCentral Mueller SG, Weiner MW, Thal LJ et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66CrossRefPubMedPubMedCentral
24.
25.
go back to reference Lindberg O, Östberg P, Zandbelt BB, et al. (2009) Cortical morphometric subclassification of frontotemporal lobar degeneration. Am J Neuroradiol 30:1233–1239 Lindberg O, Östberg P, Zandbelt BB, et al. (2009) Cortical morphometric subclassification of frontotemporal lobar degeneration. Am J Neuroradiol 30:1233–1239
26.
go back to reference Neary D, Snowden J, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefPubMed Neary D, Snowden J, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefPubMed
27.
28.
go back to reference Liu Y, Paajanen T, Zhang Y et al (2011) Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups--the AddNeuroMed study. Neurobiol Aging 32:1198–1206CrossRefPubMed Liu Y, Paajanen T, Zhang Y et al (2011) Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups--the AddNeuroMed study. Neurobiol Aging 32:1198–1206CrossRefPubMed
29.
go back to reference Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR (2007) Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 23:334–342CrossRefPubMed Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR (2007) Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 23:334–342CrossRefPubMed
30.
go back to reference Victoroff J, Mack W, Grafton S, Schreiber SS, Chui HC (1994) A method to improve interrater reliability of visual inspection of brain MRI scans in dementia. Neurology 44:2267–2276CrossRefPubMed Victoroff J, Mack W, Grafton S, Schreiber SS, Chui HC (1994) A method to improve interrater reliability of visual inspection of brain MRI scans in dementia. Neurology 44:2267–2276CrossRefPubMed
31.
go back to reference Ferreira D, Molina Y, Machado A et al (2014) Cognitive decline is mediated by gray matter changes during middle age. Neurobiol Aging 35:1086–1094CrossRefPubMed Ferreira D, Molina Y, Machado A et al (2014) Cognitive decline is mediated by gray matter changes during middle age. Neurobiol Aging 35:1086–1094CrossRefPubMed
32.
go back to reference Dickerson BC, Feczko E, Augustinack JC et al (2009) Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30:432–440CrossRefPubMed Dickerson BC, Feczko E, Augustinack JC et al (2009) Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30:432–440CrossRefPubMed
33.
go back to reference Nygaard GO, Walhovd KB, Sowa P et al (2014) Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis. Mult Scler 21:402–414CrossRefPubMed Nygaard GO, Walhovd KB, Sowa P et al (2014) Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis. Mult Scler 21:402–414CrossRefPubMed
34.
go back to reference Jubault T, Gagnon J-F, Karama S et al (2011) Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage 55:462–467CrossRefPubMed Jubault T, Gagnon J-F, Karama S et al (2011) Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage 55:462–467CrossRefPubMed
35.
go back to reference Meda SA, Pryweller JR, Thornton-Wells TA (2012) Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome. PLoS One 7, e31913CrossRefPubMedPubMedCentral Meda SA, Pryweller JR, Thornton-Wells TA (2012) Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome. PLoS One 7, e31913CrossRefPubMedPubMedCentral
36.
go back to reference Rimol LM, Nesvåg R, Hagler DJ et al (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71:552–560CrossRefPubMed Rimol LM, Nesvåg R, Hagler DJ et al (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71:552–560CrossRefPubMed
37.
go back to reference Miller B, Chang L, Mena I, Boone K, Lesser IM (1993) Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4:204–213PubMed Miller B, Chang L, Mena I, Boone K, Lesser IM (1993) Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4:204–213PubMed
38.
go back to reference Grossman M, McMillan C, Moore P et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain 127:628–649CrossRefPubMed Grossman M, McMillan C, Moore P et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain 127:628–649CrossRefPubMed
39.
go back to reference Lindberg O, Manzouri A, Westman E, Wahlund LO (2012) A comparison between volumetric data generated by voxel-based morphometry and manual parcellation of multimodal regions of the frontal lobe. Am J Neuroradiol 33:1957–1963CrossRefPubMed Lindberg O, Manzouri A, Westman E, Wahlund LO (2012) A comparison between volumetric data generated by voxel-based morphometry and manual parcellation of multimodal regions of the frontal lobe. Am J Neuroradiol 33:1957–1963CrossRefPubMed
40.
go back to reference Whitwell JL, Jack CR (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 16:409–425CrossRefPubMed Whitwell JL, Jack CR (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 16:409–425CrossRefPubMed
41.
go back to reference Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed
42.
go back to reference Crespo-Facorro B, Kim J, Andreasen NC et al (2000) Cerebral cortex: a topographic segmentation method using magnetic resonance imaging. Psychiatry Res 100:97–126CrossRefPubMed Crespo-Facorro B, Kim J, Andreasen NC et al (2000) Cerebral cortex: a topographic segmentation method using magnetic resonance imaging. Psychiatry Res 100:97–126CrossRefPubMed
43.
go back to reference Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176CrossRefPubMed Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176CrossRefPubMed
44.
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis i: segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis i: segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed
45.
go back to reference Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed
46.
go back to reference Eritaia J, Wood SJ, Stewart GW et al (2000) An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 44:973–977CrossRefPubMed Eritaia J, Wood SJ, Stewart GW et al (2000) An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 44:973–977CrossRefPubMed
47.
go back to reference Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed
48.
go back to reference Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284CrossRefPubMed Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284CrossRefPubMed
49.
go back to reference Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055CrossRefPubMedPubMedCentral Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055CrossRefPubMedPubMedCentral
50.
go back to reference Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80CrossRefPubMed Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80CrossRefPubMed
51.
go back to reference Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed
52.
go back to reference Fischl B, Salat DH, Van der Kouwe AJW et al (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(Suppl 1):S69–S84CrossRefPubMed Fischl B, Salat DH, Van der Kouwe AJW et al (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(Suppl 1):S69–S84CrossRefPubMed
53.
go back to reference Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMed Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMed
54.
go back to reference Fornito A, Whittle S, Wood SJ, Velakoulis D, Pantelis C, Yücel M (2006) The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. NeuroImage 33:843–854CrossRefPubMed Fornito A, Whittle S, Wood SJ, Velakoulis D, Pantelis C, Yücel M (2006) The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. NeuroImage 33:843–854CrossRefPubMed
55.
go back to reference McCormick LM, Ziebell S, Nopoulos P, Cassell M, Andreasen NC, Brumm M (2006) Anterior cingulate cortex: an MRI-based parcellation method. NeuroImage 32:1167–1175CrossRefPubMed McCormick LM, Ziebell S, Nopoulos P, Cassell M, Andreasen NC, Brumm M (2006) Anterior cingulate cortex: an MRI-based parcellation method. NeuroImage 32:1167–1175CrossRefPubMed
57.
go back to reference Ségonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075CrossRefPubMed Ségonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075CrossRefPubMed
58.
go back to reference Ségonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529CrossRefPubMed Ségonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529CrossRefPubMed
59.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed
Metadata
Title
Quantitative validation of a visual rating scale for frontal atrophy: associations with clinical status, APOE e4, CSF biomarkers and cognition
Authors
Daniel Ferreira
Lena Cavallin
Tobias Granberg
Olof Lindberg
Carlos Aguilar
Patrizia Mecocci
Bruno Vellas
Magda Tsolaki
Iwona Kłoszewska
Hilkka Soininen
Simon Lovestone
Andrew Simmons
Lars-Olof Wahlund
Eric Westman
for the AddNeuroMed consortium and for the Alzheimer’s Disease Neuroimaging Initiative*
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4101-9

Other articles of this Issue 8/2016

European Radiology 8/2016 Go to the issue