Skip to main content
Top
Published in: European Radiology 2/2016

01-02-2016 | Contrast Media

Estimating GFR prior to contrast medium examinations—what the radiologist needs to know!

Authors: Ulf Nyman, Jonas Björk, Sten-Erik Bäck, Gunnar Sterner, Anders Grubb

Published in: European Radiology | Issue 2/2016

Login to get access

Abstract

Creatinine-based equations to estimate glomerular filtration rate (GFR) are increasingly used in radiological practice and in studies on contrast medium-induced acute kidney injury (CIAKI). Their use is recommended in guidelines and contrast medium textbooks to identify patients at risk of CIAKI or nephrogenic systemic fibrosis. There is also an increased interest in cystatin C-based equations. Adopting GFR equations requires local creatinine and cystatin C assay calibrations to equal those used in developing the equations to avoid overestimation or underestimation of renal function. Methods should preferably be traceable to international standards, and assay traceability should be defined in CIAKI studies. Absolute GFR (mL/min) should be used when dosing contrast media and relating the dose to CIAKI instead of commonly used relative GFR (mL/min/1.73 m2) estimates. Accuracy of creatinine and cystatin C equations (percentage of GFR estimates within 30 % of measured GFR) ranges between 75 % and 85 %. Equations combining creatinine and cystatin C may reach 90 %, an accuracy similar to clearance methods (used as a reference test when developing and validating equations) when compared to the gold standard, renal clearance of inulin. The local laboratory or nephrology experts should be consulted in matters of method calibration and choice of GFR equation.
Key Points
Traceability of creatinine/cystatin C assays used in GFR equations must be defined.
Absolute, not relative, GFR should be used when dosing contrast media.
Consult the local laboratory or nephrologist to choose the proper GFR equation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150CrossRef
2.
go back to reference Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541PubMedCrossRef Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541PubMedCrossRef
4.
go back to reference Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ (2014) Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J 65:96–105PubMedCrossRef Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ (2014) Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J 65:96–105PubMedCrossRef
6.
go back to reference Bongartz GM, Thomsen HS (2014) Chronic kidney disease, serum creatinine and estimated glomerular filtration rate (eGFR). In: Thomas HS, Webb JAW (eds) Contrast media. Safety issues and ESUR guidelines, 3rd edn. Springer, Heidelberg, pp 73–80CrossRef Bongartz GM, Thomsen HS (2014) Chronic kidney disease, serum creatinine and estimated glomerular filtration rate (eGFR). In: Thomas HS, Webb JAW (eds) Contrast media. Safety issues and ESUR guidelines, 3rd edn. Springer, Heidelberg, pp 73–80CrossRef
7.
go back to reference Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin N Am 47:871–875, vii PubMedCrossRef Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin N Am 47:871–875, vii PubMedCrossRef
8.
go back to reference Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8PubMedCrossRef Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8PubMedCrossRef
9.
go back to reference Grubb A (2010) Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest 70:65–70PubMedPubMedCentralCrossRef Grubb A (2010) Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest 70:65–70PubMedPubMedCentralCrossRef
10.
go back to reference Inker LA, Okparavero A (2011) Cystatin C as a marker of glomerular filtration rate: prospects and limitations. Curr Opin Nephrol Hypertens 20:631–639PubMedCrossRef Inker LA, Okparavero A (2011) Cystatin C as a marker of glomerular filtration rate: prospects and limitations. Curr Opin Nephrol Hypertens 20:631–639PubMedCrossRef
11.
go back to reference Coresh J, Astor BC, McQuillan G et al (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929PubMedCrossRef Coresh J, Astor BC, McQuillan G et al (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929PubMedCrossRef
12.
go back to reference Miller WG, Myers GL, Ashwood ER et al (2005) Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 129:297–304PubMed Miller WG, Myers GL, Ashwood ER et al (2005) Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 129:297–304PubMed
13.
go back to reference Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18PubMedCrossRef Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18PubMedCrossRef
14.
go back to reference Stevens LA, Manzi J, Levey AS et al (2007) Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 50:21–35PubMedCrossRef Stevens LA, Manzi J, Levey AS et al (2007) Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 50:21–35PubMedCrossRef
15.
go back to reference Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRef Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRef
16.
go back to reference Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263PubMed Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263PubMed
17.
go back to reference Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Investig Radiol 41:815–821CrossRef Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Investig Radiol 41:815–821CrossRef
18.
go back to reference Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE trial: comparison on the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Investig Radiol 43:170–178CrossRef Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE trial: comparison on the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Investig Radiol 43:170–178CrossRef
19.
go back to reference Panteghini M (2008) Enzymatic assays for creatinine: time for action. Clin Chem Lab Med 46:567–572PubMed Panteghini M (2008) Enzymatic assays for creatinine: time for action. Clin Chem Lab Med 46:567–572PubMed
21.
go back to reference Swedish Council on Health Technology Assessment (2013) Methods to estimate and measure renal function (glomerulär filtration rate). A systematic review [Swedish]. SBU Report 214. Available at http://www.sbu.se/214. Accessed 1 Mar 2015 Swedish Council on Health Technology Assessment (2013) Methods to estimate and measure renal function (glomerulär filtration rate). A systematic review [Swedish]. SBU Report 214. Available at http://​www.​sbu.​se/​214. Accessed 1 Mar 2015
23.
go back to reference National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266 National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266
25.
go back to reference Lott R, Hayton W (1978) Estimation of creatinine clearance from serum creatinine concentration—a review. Drug Intell Clin Pharm 12:140–150 Lott R, Hayton W (1978) Estimation of creatinine clearance from serum creatinine concentration—a review. Drug Intell Clin Pharm 12:140–150
27.
go back to reference Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I (2011) GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol 22:1517–1525PubMedPubMedCentralCrossRef Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I (2011) GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol 22:1517–1525PubMedPubMedCentralCrossRef
28.
go back to reference Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953PubMed Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953PubMed
29.
go back to reference Sterner G, Wroblewski M, Rosen U (1992) Postprandial increase in serum creatinine in renal transplant recipients. Transpl Int 5:115–117PubMedCrossRef Sterner G, Wroblewski M, Rosen U (1992) Postprandial increase in serum creatinine in renal transplant recipients. Transpl Int 5:115–117PubMedCrossRef
30.
go back to reference Duncan L, Heathcote J, Djurdjev O, Levin A (2001) Screening for renal disease using serum creatinine: who are we missing? Nephrol Dial Transplant 16:1042–1046PubMedCrossRef Duncan L, Heathcote J, Djurdjev O, Levin A (2001) Screening for renal disease using serum creatinine: who are we missing? Nephrol Dial Transplant 16:1042–1046PubMedCrossRef
31.
go back to reference Jaffe M (1886) Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400 Jaffe M (1886) Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400
32.
go back to reference Peake M, Whiting M (2006) Measurement of serum creatinine–current status and future goals. Clin Biochem Rev 27:173–184PubMedPubMedCentral Peake M, Whiting M (2006) Measurement of serum creatinine–current status and future goals. Clin Biochem Rev 27:173–184PubMedPubMedCentral
33.
go back to reference Stokes P, O'Connor G (2003) Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum. J Chromatogr B Anal Technol Biomed Life Sci 794:125–136CrossRef Stokes P, O'Connor G (2003) Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum. J Chromatogr B Anal Technol Biomed Life Sci 794:125–136CrossRef
35.
go back to reference Kemperman FA, Krediet RT, Arisz L (2002) Formula-derived prediction of the glomerular filtration rate from plasma creatinine concentration. Nephron 91:547–558PubMedCrossRef Kemperman FA, Krediet RT, Arisz L (2002) Formula-derived prediction of the glomerular filtration rate from plasma creatinine concentration. Nephron 91:547–558PubMedCrossRef
36.
go back to reference Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254PubMedCrossRef Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254PubMedCrossRef
38.
go back to reference Ma YC, Zuo L, Chen JH et al (2006) Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 17:2937–2944PubMedCrossRef Ma YC, Zuo L, Chen JH et al (2006) Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 17:2937–2944PubMedCrossRef
39.
go back to reference Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S (2010) Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 56:32–38PubMedCrossRef Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S (2010) Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 56:32–38PubMedCrossRef
40.
go back to reference Stevens LA, Claybon MA, Schmid CH et al (2011) Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79:555–562PubMedPubMedCentralCrossRef Stevens LA, Claybon MA, Schmid CH et al (2011) Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79:555–562PubMedPubMedCentralCrossRef
41.
go back to reference Nyman U, Björk J, Sterner G et al (2006) Standardization of p-creatinine assays and use of lean body mass allow improved prediction of calculated glomerular filtration rate in adults: a new equation. Scand J Clin Lab Invest 66:451–468PubMedCrossRef Nyman U, Björk J, Sterner G et al (2006) Standardization of p-creatinine assays and use of lean body mass allow improved prediction of calculated glomerular filtration rate in adults: a new equation. Scand J Clin Lab Invest 66:451–468PubMedCrossRef
42.
go back to reference Björk J, Grubb A, Sterner G, Nyman U (2011) Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 71:232–239PubMedCrossRef Björk J, Grubb A, Sterner G, Nyman U (2011) Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 71:232–239PubMedCrossRef
44.
go back to reference Gao A, Cachat F, Faouzi M et al (2013) Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 83:524–530PubMedCrossRef Gao A, Cachat F, Faouzi M et al (2013) Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 83:524–530PubMedCrossRef
45.
go back to reference Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503PubMedCrossRef Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503PubMedCrossRef
46.
go back to reference Tangri N, Stevens LA, Schmid CH et al (2011) Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int 79:471–477PubMedPubMedCentralCrossRef Tangri N, Stevens LA, Schmid CH et al (2011) Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int 79:471–477PubMedPubMedCentralCrossRef
47.
go back to reference Pöge U, Gerhardt T, Bokenkamp A et al (2004) Time course of low molecular weight proteins in the early kidney transplantation period–influence of corticosteroids. Nephrol Dial Transplant 19:2858–2863PubMedCrossRef Pöge U, Gerhardt T, Bokenkamp A et al (2004) Time course of low molecular weight proteins in the early kidney transplantation period–influence of corticosteroids. Nephrol Dial Transplant 19:2858–2863PubMedCrossRef
48.
go back to reference Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 49:680–681PubMedCrossRef Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 49:680–681PubMedCrossRef
49.
go back to reference Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947PubMedCrossRef Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947PubMedCrossRef
50.
go back to reference Sjöström P, Tidman M, Jones I (2004) The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol 62:241–242PubMedCrossRef Sjöström P, Tidman M, Jones I (2004) The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol 62:241–242PubMedCrossRef
51.
go back to reference Rickli H, Benou K, Ammann P et al (2004) Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol 61:98–102PubMedCrossRef Rickli H, Benou K, Ammann P et al (2004) Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol 61:98–102PubMedCrossRef
52.
53.
go back to reference Briguori C, Visconti G, Rivera NV et al (2010) Cystatin C and contrast-induced acute kidney injury. Circulation 121:2117–2122PubMedCrossRef Briguori C, Visconti G, Rivera NV et al (2010) Cystatin C and contrast-induced acute kidney injury. Circulation 121:2117–2122PubMedCrossRef
54.
go back to reference Flodin M, Hansson LO, Larsson A (2006) Variations in assay protocol for the Dako cystatin C method may change patient results by 50% without changing the results for controls. Clin Chem Lab Med 44:1481–1485PubMedCrossRef Flodin M, Hansson LO, Larsson A (2006) Variations in assay protocol for the Dako cystatin C method may change patient results by 50% without changing the results for controls. Clin Chem Lab Med 44:1481–1485PubMedCrossRef
55.
go back to reference Hansson LO, Grubb A, Liden A et al (2010) Performance evaluation of a turbidimetric cystatin C assay on different high-throughput platforms. Scand J Clin Lab Invest 70:347–353PubMedCrossRef Hansson LO, Grubb A, Liden A et al (2010) Performance evaluation of a turbidimetric cystatin C assay on different high-throughput platforms. Scand J Clin Lab Invest 70:347–353PubMedCrossRef
56.
go back to reference Li J, Dunn W, Breaud A, Elliott D, Sokoll LJ, Clarke W (2010) Analytical performance of 4 automated assays for measurement of cystatin C. Clin Chem 56:1336–1339PubMedCrossRef Li J, Dunn W, Breaud A, Elliott D, Sokoll LJ, Clarke W (2010) Analytical performance of 4 automated assays for measurement of cystatin C. Clin Chem 56:1336–1339PubMedCrossRef
57.
go back to reference Blirup-Jensen S, Grubb A, Lindstrom V, Schmidt C, Althaus H (2008) Standardization of Cystatin C: development of primary and secondary reference preparations. Scand J Clin Lab Investig Suppl 241:67–70CrossRef Blirup-Jensen S, Grubb A, Lindstrom V, Schmidt C, Althaus H (2008) Standardization of Cystatin C: development of primary and secondary reference preparations. Scand J Clin Lab Investig Suppl 241:67–70CrossRef
58.
go back to reference Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621PubMedCrossRef Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621PubMedCrossRef
60.
go back to reference Grubb A, Horio M, Hansson LO et al (2014) Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 60:974–98661PubMedCrossRef Grubb A, Horio M, Hansson LO et al (2014) Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 60:974–98661PubMedCrossRef
61.
62.
go back to reference Chehade H, Cachat F, Jannot AS et al (2014) New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 9:54–63PubMedPubMedCentralCrossRef Chehade H, Cachat F, Jannot AS et al (2014) New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 9:54–63PubMedPubMedCentralCrossRef
63.
go back to reference Stevens LA, Zhang Y, Schmid CH (2008) Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 21:797–807PubMedPubMedCentral Stevens LA, Zhang Y, Schmid CH (2008) Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 21:797–807PubMedPubMedCentral
64.
go back to reference National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4. Estimation of GFR. Am J Kidney Dis 39:S76–S92CrossRef National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4. Estimation of GFR. Am J Kidney Dis 39:S76–S92CrossRef
65.
go back to reference Soveri I, Berg UB, Björk J et al (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424PubMedCrossRef Soveri I, Berg UB, Björk J et al (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424PubMedCrossRef
66.
go back to reference Kwong YT, Stevens LA, Selvin E et al (2010) Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 56:39–49PubMedPubMedCentralCrossRef Kwong YT, Stevens LA, Selvin E et al (2010) Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 56:39–49PubMedPubMedCentralCrossRef
67.
go back to reference Horio M, Yasuda Y, Imai E (2012) Ethnic factors of the glomerular filtration rate estimating equation. Kidney Int 81:799, author reply 799-800 PubMedCrossRef Horio M, Yasuda Y, Imai E (2012) Ethnic factors of the glomerular filtration rate estimating equation. Kidney Int 81:799, author reply 799-800 PubMedCrossRef
68.
go back to reference Levey AS, Greene T, Schluchter MD et al (1993) Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 4:1159–1171PubMedPubMedCentral Levey AS, Greene T, Schluchter MD et al (1993) Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 4:1159–1171PubMedPubMedCentral
69.
go back to reference Perrone RD, Steinman TI, Beck GJ et al (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 16:224–235PubMedCrossRef Perrone RD, Steinman TI, Beck GJ et al (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 16:224–235PubMedCrossRef
70.
go back to reference Björk J, Grubb A, Nyman U (2009) Variability in diagnostic accuracy can be estimated using simple population weighting. J Clin Epidemiol 62:54–57PubMedCrossRef Björk J, Grubb A, Nyman U (2009) Variability in diagnostic accuracy can be estimated using simple population weighting. J Clin Epidemiol 62:54–57PubMedCrossRef
71.
go back to reference Björk J, Jones I, Nyman U, Sjöström P (2012) Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 46:212–222PubMedCrossRef Björk J, Jones I, Nyman U, Sjöström P (2012) Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 46:212–222PubMedCrossRef
72.
go back to reference Nyman U, Grubb A, Larsson A et al (2014) The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 52:815–824PubMedCrossRef Nyman U, Grubb A, Larsson A et al (2014) The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 52:815–824PubMedCrossRef
73.
go back to reference Evans M, van Stralen KJ, Schon S et al (2013) Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 28:2518–2526PubMedCrossRef Evans M, van Stralen KJ, Schon S et al (2013) Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 28:2518–2526PubMedCrossRef
74.
go back to reference Bouquegneau A, Vidal-Petiot E, Vrtovsnik F et al (2013) Modification of Diet in Renal Disease versus Chronic Kidney Disease Epidemiology Collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 28:iv122–iv130PubMedCrossRef Bouquegneau A, Vidal-Petiot E, Vrtovsnik F et al (2013) Modification of Diet in Renal Disease versus Chronic Kidney Disease Epidemiology Collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 28:iv122–iv130PubMedCrossRef
75.
go back to reference Stevens LA, Coresh J, Feldman HI et al (2007) Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 18:2749–2757PubMedCrossRef Stevens LA, Coresh J, Feldman HI et al (2007) Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 18:2749–2757PubMedCrossRef
76.
go back to reference Stevens LA, Schmid CH, Zhang YL et al (2010) Development and validation of GFR-estimating equations using diabetes, transplant and weight. Nephrol Dial Transplant 25:449–457PubMedPubMedCentralCrossRef Stevens LA, Schmid CH, Zhang YL et al (2010) Development and validation of GFR-estimating equations using diabetes, transplant and weight. Nephrol Dial Transplant 25:449–457PubMedPubMedCentralCrossRef
77.
go back to reference Björk J, Grubb A, Larsson A et al (2015) Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin Chem Lab Med 53:403–414PubMedCrossRef Björk J, Grubb A, Larsson A et al (2015) Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin Chem Lab Med 53:403–414PubMedCrossRef
78.
go back to reference Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795PubMedCrossRef Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795PubMedCrossRef
79.
go back to reference Kristensen K, Lindstrom V, Schmidt C et al (2007) Temporal changes of the plasma levels of cystatin C, beta-trace protein, beta2-microglobulin, urate and creatinine during pregnancy indicate continuous alterations in the renal filtration process. Scand J Clin Lab Invest 67:612–618PubMedCrossRef Kristensen K, Lindstrom V, Schmidt C et al (2007) Temporal changes of the plasma levels of cystatin C, beta-trace protein, beta2-microglobulin, urate and creatinine during pregnancy indicate continuous alterations in the renal filtration process. Scand J Clin Lab Invest 67:612–618PubMedCrossRef
80.
go back to reference Delanaye P, Cavalier E, Cristol JP, Delanghe JR (2014) Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol 25:467–475CrossRef Delanaye P, Cavalier E, Cristol JP, Delanghe JR (2014) Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol 25:467–475CrossRef
81.
go back to reference Kuster N, Cristol JP, Cavalier E et al (2014) Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin Chim Acta 428:89–95PubMedCrossRef Kuster N, Cristol JP, Cavalier E et al (2014) Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin Chim Acta 428:89–95PubMedCrossRef
82.
go back to reference Grubb A, Nyman U, Björk J (2012) Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand J Clin Lab Invest 72:73–77PubMedPubMedCentralCrossRef Grubb A, Nyman U, Björk J (2012) Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand J Clin Lab Invest 72:73–77PubMedPubMedCentralCrossRef
83.
go back to reference Nyman U, Björk J, Lindström V, Grubb A (2008) The Lund-Malmö creatinine-based glomerular filtration rate prediction equation for adults also performs well in children. Scand J Clin Lab Invest 68:568–576PubMedCrossRef Nyman U, Björk J, Lindström V, Grubb A (2008) The Lund-Malmö creatinine-based glomerular filtration rate prediction equation for adults also performs well in children. Scand J Clin Lab Invest 68:568–576PubMedCrossRef
84.
go back to reference Sherwin PF, Cambron R, Johnson JA, Pierro JA (2005) Contrast dose-to-creatinine clearance ratio as a potential indicator of risk for radiocontrast-induced nephropathy: correlation of D/CrCL with area under the contrast concentration-time curve using iodixanol. Investig Radiol 40:598–603CrossRef Sherwin PF, Cambron R, Johnson JA, Pierro JA (2005) Contrast dose-to-creatinine clearance ratio as a potential indicator of risk for radiocontrast-induced nephropathy: correlation of D/CrCL with area under the contrast concentration-time curve using iodixanol. Investig Radiol 40:598–603CrossRef
85.
go back to reference Chen M-L, Lekso L, Williams R (2001) Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet 40:565–572PubMedCrossRef Chen M-L, Lekso L, Williams R (2001) Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet 40:565–572PubMedCrossRef
86.
go back to reference Nyman U, Almen T, Aspelin P, Hellström M, Kristiansson M, Sterner G (2005) Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842PubMedCrossRef Nyman U, Almen T, Aspelin P, Hellström M, Kristiansson M, Sterner G (2005) Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842PubMedCrossRef
87.
go back to reference DuBois D, DuBois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871CrossRef DuBois D, DuBois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871CrossRef
88.
go back to reference Nyman U, Björk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667PubMedCrossRef Nyman U, Björk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667PubMedCrossRef
89.
go back to reference Solomon RJ, Natarajan MK, Doucet S et al (2007) Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115:3189–3196PubMedCrossRef Solomon RJ, Natarajan MK, Doucet S et al (2007) Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115:3189–3196PubMedCrossRef
90.
go back to reference Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or iso-osmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157PubMedCrossRef Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or iso-osmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157PubMedCrossRef
91.
go back to reference Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT–a pooled analysis of two randomized trials. Eur Radiol 19:891–897PubMedCrossRef Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT–a pooled analysis of two randomized trials. Eur Radiol 19:891–897PubMedCrossRef
92.
go back to reference Gurm HS, Dixon SR, Smith DE et al (2011) Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 58:907–914PubMedCrossRef Gurm HS, Dixon SR, Smith DE et al (2011) Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 58:907–914PubMedCrossRef
93.
go back to reference Laskey W (2006) Contrast-induced nephropathy: clinical insights and practical guidance. Am J Cardiol 98:1K–77KCrossRef Laskey W (2006) Contrast-induced nephropathy: clinical insights and practical guidance. Am J Cardiol 98:1K–77KCrossRef
94.
go back to reference Liu Y, Tan N, Zhou YL, He PC, Luo JF, Chen JY (2012) The contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy after primary percutaneous coronary intervention. Int Urol Nephrol 44:221–229PubMedCrossRef Liu Y, Tan N, Zhou YL, He PC, Luo JF, Chen JY (2012) The contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy after primary percutaneous coronary intervention. Int Urol Nephrol 44:221–229PubMedCrossRef
Metadata
Title
Estimating GFR prior to contrast medium examinations—what the radiologist needs to know!
Authors
Ulf Nyman
Jonas Björk
Sten-Erik Bäck
Gunnar Sterner
Anders Grubb
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3842-9

Other articles of this Issue 2/2016

European Radiology 2/2016 Go to the issue