Skip to main content
Top
Published in: European Radiology 10/2015

Open Access 01-10-2015 | Neuro

Cerebral perfusion and glucose metabolism in Alzheimer’s disease and frontotemporal dementia: two sides of the same coin?

Authors: Sander C. J. Verfaillie, Sofie M. Adriaanse, Maja A. A. Binnewijzend, Marije R. Benedictus, Rik Ossenkoppele, Mike P. Wattjes, Yolande A. L. Pijnenburg, Wiesje M. van der Flier, Adriaan A. Lammertsma, Joost P. A. Kuijer, Ronald Boellaard, Philip Scheltens, Bart N. M. van Berckel, Frederik Barkhof

Published in: European Radiology | Issue 10/2015

Login to get access

Abstract

Objectives

Alzheimer’s disease (AD) and frontotemporal (FTD) dementia can be differentiated using [18F]-2-deoxy-2-fluoro-D-glucose (FDG)-PET. Since cerebral blood flow (CBF) is related to glucose metabolism, our aim was to investigate the extent of overlap of abnormalities between AD and FTD.

Methods

Normalized FDG-PET and arterial spin labelling (ASL-MRI)-derived CBF was measured in 18 AD patients (age, 64 ± 8), 12 FTD patients (age, 61 ± 8), and 10 controls (age, 56 ± 10). Voxel-wise comparisons, region-of-interest (ROI), correlation, and ROC curve analyses were performed.

Results

Voxel-wise comparisons showed decreased CBF and FDG uptake in AD compared with controls and FTD in both precuneus and inferior parietal lobule (IPL). Compared with controls and AD, FTD patients showed both hypometabolism and hypoperfusion in medial prefrontal cortex (mPFC). ASL and FDG were related in precuneus (r = 0.62, p < 0.001), IPL (r = 0.61, p < 0.001), and mPFC across groups (r = 0.74, p < 001). ROC analyses indicated comparable performance of perfusion and metabolism in the precuneus (AUC, 0.72 and 0.74), IPL (0.85 and 0.94) for AD relative to FTD, and in the mPFC in FTD relative to AD (both 0.68).

Conclusions

Similar patterns of hypoperfusion and hypometabolism were observed in regions typically associated with AD and FTD, suggesting that ASL-MRI provides information comparable to FDG-PET.

Key Points

Similar patterns of hypoperfusion and hypometabolism were observed in patients with dementia.
For both imaging modalities, parietal abnormalities were found in Alzheimer’s disease.
For both imaging modalities, prefrontal abnormalities were found in frontotemporal dementia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzheimer’s Association (2012) 2012 Alzheimer's disease facts and figures. Alzheimers Dement 8:131–168 Alzheimer’s Association (2012) 2012 Alzheimer's disease facts and figures. Alzheimers Dement 8:131–168
2.
go back to reference Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621CrossRefPubMed Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621CrossRefPubMed
3.
go back to reference Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2011) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53:59–71CrossRefPubMed Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2011) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53:59–71CrossRefPubMed
4.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedCentralCrossRefPubMed Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedCentralCrossRefPubMed
5.
go back to reference Hoffman JM, Welsh-Bohmer KA, Hanson M et al (2000) FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 41:1920–1928PubMed Hoffman JM, Welsh-Bohmer KA, Hanson M et al (2000) FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 41:1920–1928PubMed
6.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42:85–94CrossRefPubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42:85–94CrossRefPubMed
7.
go back to reference Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 49:390–398PubMedCentralCrossRefPubMed Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 49:390–398PubMedCentralCrossRefPubMed
8.
go back to reference Jeong Y, Cho SS, Park JM et al (2005) 18F -FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 46:233–239PubMed Jeong Y, Cho SS, Park JM et al (2005) 18F -FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 46:233–239PubMed
9.
go back to reference Diehl-Schmid J, Grimmer T, Drzezga A et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET study. Neurobiol Aging 28:42–50CrossRefPubMed Diehl-Schmid J, Grimmer T, Drzezga A et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET study. Neurobiol Aging 28:42–50CrossRefPubMed
10.
go back to reference Grimmer T, Diehl J, Drzezga A, Forstl H, Kurz A (2004) Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F -FDG-PET study. Dement Geriatr Cogn Disord 18:32–36CrossRefPubMed Grimmer T, Diehl J, Drzezga A, Forstl H, Kurz A (2004) Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F -FDG-PET study. Dement Geriatr Cogn Disord 18:32–36CrossRefPubMed
11.
go back to reference Foster NL, Heidebrink JL, Clark CM et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain 130:2616–2635CrossRefPubMed Foster NL, Heidebrink JL, Clark CM et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain 130:2616–2635CrossRefPubMed
12.
go back to reference Panegyres PK, Rogers JM, McCarthy M, Campbell A, Wu JS (2009) Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol 9:41PubMedCentralCrossRefPubMed Panegyres PK, Rogers JM, McCarthy M, Campbell A, Wu JS (2009) Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol 9:41PubMedCentralCrossRefPubMed
15.
go back to reference Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208:410–416CrossRefPubMed Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208:410–416CrossRefPubMed
16.
17.
go back to reference Takahashi H, Ishii K, Hosokawa C et al (2013) Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT. AJNR Am J Neuroradiol Takahashi H, Ishii K, Hosokawa C et al (2013) Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT. AJNR Am J Neuroradiol
18.
go back to reference Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 20:871–880PubMedCentralPubMed Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 20:871–880PubMedCentralPubMed
19.
go back to reference Binnewijzend MA, Kuijer JP, Benedictus MR et al (2012) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230CrossRefPubMed Binnewijzend MA, Kuijer JP, Benedictus MR et al (2012) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230CrossRefPubMed
20.
go back to reference Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866PubMedCentralCrossRefPubMed Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866PubMedCentralCrossRefPubMed
21.
go back to reference Johnson NA, Jahng GH, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859PubMedCentralCrossRefPubMed Johnson NA, Jahng GH, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859PubMedCentralCrossRefPubMed
22.
go back to reference Du AT, Jahng GH, Hayasaka S et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67:1215–1220PubMedCentralCrossRefPubMed Du AT, Jahng GH, Hayasaka S et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67:1215–1220PubMedCentralCrossRefPubMed
23.
24.
go back to reference Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77:1977–1985PubMedCentralCrossRefPubMed Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77:1977–1985PubMedCentralCrossRefPubMed
25.
go back to reference Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 8:51–59PubMedCentralCrossRefPubMed Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 8:51–59PubMedCentralCrossRefPubMed
26.
go back to reference van der Flier WM, Pijnenburg YA, Prins N et al (2014) Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 41:313–327PubMed van der Flier WM, Pijnenburg YA, Prins N et al (2014) Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 41:313–327PubMed
27.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269PubMedCentralCrossRefPubMed McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269PubMedCentralCrossRefPubMed
28.
go back to reference Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477PubMedCentralCrossRefPubMed Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477PubMedCentralCrossRefPubMed
29.
go back to reference Ossenkoppele R, Zwan MD, Tolboom N et al (2012) Amyloid burden and metabolic function in early-onset Alzheimer's disease: parietal lobe involvement. Brain 135:2115–2125CrossRefPubMed Ossenkoppele R, Zwan MD, Tolboom N et al (2012) Amyloid burden and metabolic function in early-onset Alzheimer's disease: parietal lobe involvement. Brain 135:2115–2125CrossRefPubMed
30.
go back to reference Ossenkoppele R, Tolboom N, Foster-Dingley JC et al (2012) Longitudinal imaging of Alzheimer pathology using [(11)C]PIB, [(18)F]FDDNP and [(18)F]FDG PET. Eur J Nucl Med Mol Imaging Ossenkoppele R, Tolboom N, Foster-Dingley JC et al (2012) Longitudinal imaging of Alzheimer pathology using [(11)C]PIB, [(18)F]FDDNP and [(18)F]FDG PET. Eur J Nucl Med Mol Imaging
31.
go back to reference Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156CrossRefPubMed Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156CrossRefPubMed
32.
go back to reference Liu Y, Zhu X, Feinberg D et al (2012) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med 68:912–922CrossRefPubMed Liu Y, Zhu X, Feinberg D et al (2012) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med 68:912–922CrossRefPubMed
33.
go back to reference Edison P, Archer HA, Hinz R et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [(11)C]PIB and [18F]FDG PET study. Neurology 68:501–508CrossRefPubMed Edison P, Archer HA, Hinz R et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [(11)C]PIB and [18F]FDG PET study. Neurology 68:501–508CrossRefPubMed
34.
go back to reference Koedam EL, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625PubMedCentralCrossRefPubMed Koedam EL, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625PubMedCentralCrossRefPubMed
35.
go back to reference Borroni B, Grassi M, Premi E et al (2012) Neuroanatomical correlates of behavioural phenotypes in behavioural variant of frontotemporal dementia. Behav Brain Res 235:124–129CrossRefPubMed Borroni B, Grassi M, Premi E et al (2012) Neuroanatomical correlates of behavioural phenotypes in behavioural variant of frontotemporal dementia. Behav Brain Res 235:124–129CrossRefPubMed
36.
go back to reference Binnewijzend MA, Kuijer JP, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333CrossRefPubMed Binnewijzend MA, Kuijer JP, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333CrossRefPubMed
37.
go back to reference Ibanez V, Pietrini P, Alexander GE et al (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 50:1585–1593CrossRefPubMed Ibanez V, Pietrini P, Alexander GE et al (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 50:1585–1593CrossRefPubMed
38.
go back to reference Shimizu S, Zhang Y, Laxamana J et al (2010) Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia. Brain Imaging Behav 4:46–54PubMedCentralCrossRefPubMed Shimizu S, Zhang Y, Laxamana J et al (2010) Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia. Brain Imaging Behav 4:46–54PubMedCentralCrossRefPubMed
39.
go back to reference Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ (1996) Regional hypometabolism in Alzheimer's disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47:454–461CrossRefPubMed Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ (1996) Regional hypometabolism in Alzheimer's disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47:454–461CrossRefPubMed
40.
go back to reference Hutton BF, Thomas BA, Erlandsson K et al (2013) What approach to brain partial volume correction is best for PET/MRI? Nucl Inst Methods Phys Res A 29–33 Hutton BF, Thomas BA, Erlandsson K et al (2013) What approach to brain partial volume correction is best for PET/MRI? Nucl Inst Methods Phys Res A 29–33
Metadata
Title
Cerebral perfusion and glucose metabolism in Alzheimer’s disease and frontotemporal dementia: two sides of the same coin?
Authors
Sander C. J. Verfaillie
Sofie M. Adriaanse
Maja A. A. Binnewijzend
Marije R. Benedictus
Rik Ossenkoppele
Mike P. Wattjes
Yolande A. L. Pijnenburg
Wiesje M. van der Flier
Adriaan A. Lammertsma
Joost P. A. Kuijer
Ronald Boellaard
Philip Scheltens
Bart N. M. van Berckel
Frederik Barkhof
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3696-1

Other articles of this Issue 10/2015

European Radiology 10/2015 Go to the issue