Skip to main content
Top
Published in: European Radiology 6/2012

01-06-2012 | Musculoskeletal

Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results

Authors: Gregory Chang, Guillaume Madelin, Orrin H. Sherman, Eric J. Strauss, Ding Xia, Michael P. Recht, Alexej Jerschow, Ravinder R. Regatte

Published in: European Radiology | Issue 6/2012

Login to get access

Abstract

Objectives

To evaluate cartilage repair and native tissue using a three-dimensional (3D), radial, ultra-short echo time (UTE) 23Na MR sequence without and with an inversion recovery (IR) preparation pulse for fluid suppression at 7 Tesla (T).

Methods

This study had institutional review board approval. We recruited 11 consecutive patients (41.5 ± 11.8 years) from an orthopaedic surgery practice who had undergone a knee cartilage restoration procedure. The subjects were examined postoperatively (median = 26 weeks) with 7-T MRI using: proton-T2 (TR/TE = 3,000 ms/60 ms); sodium UTE (TR/TE = 100 ms/0.4 ms); fluid-suppressed, sodium UTE adiabatic IR. Cartilage sodium concentrations in repair tissue ([Na+]R), adjacent native cartilage ([Na+]N), and native cartilage within the opposite, non-surgical compartment ([Na+]N2) were calculated using external NaCl phantoms.

Results

For conventional sodium imaging, mean [Na+]R, [Na+]N, [Na+]N2 were 177.8 ± 54.1 mM, 170.1 ± 40.7 mM, 172.2 ± 30 mM respectively. Differences in [Na+]R versus [Na+]N (P = 0.59) and [Na+]N versus [Na+]N2 (P = 0.89) were not significant. For sodium IR imaging, mean [Na+]R, [Na+]N, [Na+]N2 were 108.9 ± 29.8 mM, 204.6 ± 34.7 mM, 249.9 ± 44.6 mM respectively. Decreases in [Na+]R versus [Na+]N (P = 0.0.0000035) and [Na+]N versus [Na+]N2 (P = 0.015) were significant.

Conclusions

Sodium IR imaging at 7 T can suppress the signal from free sodium within synovial fluid. This may allow improved assessment of [Na+] within cartilage repair and native tissue.

Key Points

NaIR magnetic resonance imaging can suppress signal from sodium within synovial fluid.
NaIR MRI thus allows assessment of sodium concentration within cartilage tissue alone.
This may facilitate more accurate assessment of repair tissue composition and quality.
Literature
1.
2.
go back to reference Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F (2009) MR imaging of cartilage and its repair in the knee – a review. Eur Radiol 19:1582–1594PubMedCrossRef Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F (2009) MR imaging of cartilage and its repair in the knee – a review. Eur Radiol 19:1582–1594PubMedCrossRef
3.
go back to reference Marlovits S, Striessnig G, Resinger CT et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319PubMedCrossRef Marlovits S, Striessnig G, Resinger CT et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319PubMedCrossRef
4.
go back to reference Potter HG, Foo LF (2006) Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 34:661–677PubMedCrossRef Potter HG, Foo LF (2006) Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 34:661–677PubMedCrossRef
5.
go back to reference Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448PubMedCrossRef Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448PubMedCrossRef
6.
go back to reference Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18:1251–1259PubMedCrossRef Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18:1251–1259PubMedCrossRef
7.
go back to reference White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414PubMedCrossRef White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414PubMedCrossRef
8.
go back to reference Trattnig S, Welsch GH, Juras V et al (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257:175–184PubMedCrossRef Trattnig S, Welsch GH, Juras V et al (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257:175–184PubMedCrossRef
9.
go back to reference Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and 23Na MR imaging at 7 T. Radiology 260:257–264PubMedCrossRef Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and 23Na MR imaging at 7 T. Radiology 260:257–264PubMedCrossRef
10.
go back to reference Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26:974–982PubMedCrossRef Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26:974–982PubMedCrossRef
11.
go back to reference Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368PubMedCrossRef Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368PubMedCrossRef
12.
go back to reference Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19:781–821PubMedCrossRef Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19:781–821PubMedCrossRef
13.
go back to reference Li X, Benjamin Ma C, Link TM et al (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cart 15:789–797CrossRef Li X, Benjamin Ma C, Link TM et al (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cart 15:789–797CrossRef
14.
go back to reference Burstein D, Gray M, Mosher T, Dardzinski B (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47:675–686PubMedCrossRef Burstein D, Gray M, Mosher T, Dardzinski B (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47:675–686PubMedCrossRef
15.
go back to reference Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270PubMedCrossRef Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270PubMedCrossRef
16.
go back to reference Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7 T. J Magn Reson Imaging 30:606–614PubMedCrossRef Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7 T. J Magn Reson Imaging 30:606–614PubMedCrossRef
17.
go back to reference Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32:446–451PubMedCrossRef Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32:446–451PubMedCrossRef
18.
go back to reference Wheaton AJ, Borthakur A, Shapiro EM et al (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging – feasibility study. Radiology 231:900–905PubMedCrossRef Wheaton AJ, Borthakur A, Shapiro EM et al (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging – feasibility study. Radiology 231:900–905PubMedCrossRef
19.
go back to reference Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR (2010) Sodium inversion recovery MRI of the knee joint in vivo at 7 T. J Magn Reson 207:42–52PubMedCrossRef Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR (2010) Sodium inversion recovery MRI of the knee joint in vivo at 7 T. J Magn Reson 207:42–52PubMedCrossRef
20.
go back to reference Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54:1305–1310PubMedCrossRef Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54:1305–1310PubMedCrossRef
21.
go back to reference Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef
22.
23.
go back to reference Shapiro EM, Borthakur A, Kaufman JH, Leigh JS, Reddy R (2001) Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging. Osteoarthr Cart 9:533–538CrossRef Shapiro EM, Borthakur A, Kaufman JH, Leigh JS, Reddy R (2001) Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging. Osteoarthr Cart 9:533–538CrossRef
24.
go back to reference Borthakur A, Shapiro EM, Akella SV, Gougoutas A, Kneeland JB, Reddy R (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224:598–602PubMedCrossRef Borthakur A, Shapiro EM, Akella SV, Gougoutas A, Kneeland JB, Reddy R (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224:598–602PubMedCrossRef
25.
go back to reference Kuettner KE (1992) Biochemistry of articular cartilage in health and disease. Clin Biochem 25:155–163PubMedCrossRef Kuettner KE (1992) Biochemistry of articular cartilage in health and disease. Clin Biochem 25:155–163PubMedCrossRef
26.
go back to reference Madelin G, Babb JS, Xia D, Chang G, Jerschow A, Regatte RR (2011) Reproducibility and repeatibility of quantitative sodium MRI in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med. doi:10.1002/mrm.23307 Madelin G, Babb JS, Xia D, Chang G, Jerschow A, Regatte RR (2011) Reproducibility and repeatibility of quantitative sodium MRI in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med. doi:10.​1002/​mrm.​23307
27.
go back to reference Glaser C, Mendlik T, Dinges J et al (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56:527–534PubMedCrossRef Glaser C, Mendlik T, Dinges J et al (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56:527–534PubMedCrossRef
28.
go back to reference Mosher TJ, Zhang Z, Reddy R et al (2011) Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 258:832–842PubMedCrossRef Mosher TJ, Zhang Z, Reddy R et al (2011) Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 258:832–842PubMedCrossRef
29.
go back to reference Welsch GH, Apprich S, Zbyn S et al (2010) Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7 T) compared with high field (3 T) strength. Eur Radiol Welsch GH, Apprich S, Zbyn S et al (2010) Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7 T) compared with high field (3 T) strength. Eur Radiol
30.
go back to reference DiMicco MA, Patwari P, Siparsky PN et al (2004) Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. Arthritis Rheum 50:840–848PubMedCrossRef DiMicco MA, Patwari P, Siparsky PN et al (2004) Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. Arthritis Rheum 50:840–848PubMedCrossRef
31.
go back to reference Tochigi Y, Buckwalter JA, Martin JA et al (2011) Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture. J Bone Joint Surg Am 93:533–539PubMedCrossRef Tochigi Y, Buckwalter JA, Martin JA et al (2011) Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture. J Bone Joint Surg Am 93:533–539PubMedCrossRef
32.
go back to reference Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle. J Magn Reson Imaging 11:532–538PubMedCrossRef Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle. J Magn Reson Imaging 11:532–538PubMedCrossRef
Metadata
Title
Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results
Authors
Gregory Chang
Guillaume Madelin
Orrin H. Sherman
Eric J. Strauss
Ding Xia
Michael P. Recht
Alexej Jerschow
Ravinder R. Regatte
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
European Radiology / Issue 6/2012
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2383-8

Other articles of this Issue 6/2012

European Radiology 6/2012 Go to the issue