Skip to main content
Top
Published in: European Radiology 12/2009

Open Access 01-12-2009 | Neuro

Accelerating regional atrophy rates in the progression from normal aging to Alzheimer’s disease

Authors: Jasper D. Sluimer, Wiesje M. van der Flier, Giorgos B. Karas, Ronald van Schijndel, Josephine Barnes, Richard G. Boyes, Keith S. Cover, Sílvia D. Olabarriaga, Nick C. Fox, Philip Scheltens, Hugo Vrenken, Frederik Barkhof

Published in: European Radiology | Issue 12/2009

Login to get access

Abstract

We investigated progression of atrophy in vivo, in Alzheimer’s disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 ± 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1–6.2) for occipital atrophy and 15.8 (95% CI = 3.5–71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD.
Literature
1.
go back to reference Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–92CrossRefPubMed Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–92CrossRefPubMed
2.
3.
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–59CrossRef Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–59CrossRef
4.
go back to reference Fox NC, Scahill RI, Crum WR et al (1999) Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 52:1687–9PubMed Fox NC, Scahill RI, Crum WR et al (1999) Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 52:1687–9PubMed
5.
go back to reference Jack CR, Shiung MM, Weigand SD et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231CrossRefPubMed Jack CR, Shiung MM, Weigand SD et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231CrossRefPubMed
6.
go back to reference Jack CR Jr., Petersen RC, Xu Y et al (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55:484–89PubMed Jack CR Jr., Petersen RC, Xu Y et al (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55:484–89PubMed
7.
go back to reference Tapiola T, Pennanen C, Tapiola M et al (2006) MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging 29:31–38CrossRefPubMed Tapiola T, Pennanen C, Tapiola M et al (2006) MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging 29:31–38CrossRefPubMed
8.
go back to reference van de Pol LA, van Der Flier WM, Korf ES et al (2007) Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 69:1491–7CrossRefPubMed van de Pol LA, van Der Flier WM, Korf ES et al (2007) Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 69:1491–7CrossRefPubMed
9.
go back to reference Jack CR, Shiung MM, Gunter JL et al (2004) Comparison of different MRI brain atrophy, rate measures with clinical disease progression in AD. Neurology 62:591–600PubMed Jack CR, Shiung MM, Gunter JL et al (2004) Comparison of different MRI brain atrophy, rate measures with clinical disease progression in AD. Neurology 62:591–600PubMed
10.
go back to reference Sluimer JD, van Der Flier WM, Karas GB et al (2007) Whole-brain atrophy rate and cognitive decline: a longitudinal MRI study of memory clinic patients. Radiology 248:590–598CrossRef Sluimer JD, van Der Flier WM, Karas GB et al (2007) Whole-brain atrophy rate and cognitive decline: a longitudinal MRI study of memory clinic patients. Radiology 248:590–598CrossRef
11.
go back to reference Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–98CrossRefPubMed Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–98CrossRefPubMed
12.
go back to reference Petersen RC, Stevens JC, Ganguli M et al (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–42PubMed Petersen RC, Stevens JC, Ganguli M et al (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–42PubMed
13.
go back to reference McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–44PubMed McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–44PubMed
14.
go back to reference Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–54PubMed Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–54PubMed
15.
go back to reference van Straaten EC, Scheltens P, Knol DL et al (2003) Operational definitions for the NINDS-AIREN criteria for vascular dementia: an interobserver study. Stroke 34:1907–12CrossRefPubMed van Straaten EC, Scheltens P, Knol DL et al (2003) Operational definitions for the NINDS-AIREN criteria for vascular dementia: an interobserver study. Stroke 34:1907–12CrossRefPubMed
16.
go back to reference McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–72CrossRefPubMed McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–72CrossRefPubMed
17.
go back to reference Freeborough PA, Fox NC (1998) Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr 22:838–43CrossRefPubMed Freeborough PA, Fox NC (1998) Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr 22:838–43CrossRefPubMed
18.
go back to reference Fox NC, Crum WR, Scahill RI et al (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–5CrossRefPubMed Fox NC, Crum WR, Scahill RI et al (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–5CrossRefPubMed
19.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97CrossRefPubMed
20.
go back to reference Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–89CrossRefPubMed Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–89CrossRefPubMed
21.
go back to reference Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 23:75–83CrossRefPubMed Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 23:75–83CrossRefPubMed
22.
go back to reference Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–19CrossRefPubMed Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–19CrossRefPubMed
23.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–89CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–89CrossRefPubMed
24.
go back to reference Carmichael OT, Kuller LH, Lopez OL et al (2007) Ventricular volume and dementia progression in the Cardiovascular Health Study. Neurobiol Aging 28:389–397CrossRefPubMed Carmichael OT, Kuller LH, Lopez OL et al (2007) Ventricular volume and dementia progression in the Cardiovascular Health Study. Neurobiol Aging 28:389–397CrossRefPubMed
25.
go back to reference van de Pol LA, Hensel A, Barkhof F et al (2006) Hippocampal atrophy in Alzheimer disease: age matters. Neurology 66:236–238PubMed van de Pol LA, Hensel A, Barkhof F et al (2006) Hippocampal atrophy in Alzheimer disease: age matters. Neurology 66:236–238PubMed
26.
go back to reference Apostolova LG, Steiner CA, Akopyan GG et al (2007) Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Arch Neurol 64:1489–95CrossRefPubMed Apostolova LG, Steiner CA, Akopyan GG et al (2007) Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Arch Neurol 64:1489–95CrossRefPubMed
27.
go back to reference Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309CrossRefPubMed Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309CrossRefPubMed
28.
go back to reference Karas GB, Burton EJ, Rombouts SA et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907CrossRefPubMed Karas GB, Burton EJ, Rombouts SA et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907CrossRefPubMed
29.
go back to reference Davatzikos C, Fan Y, Wu X et al (2006) Detection of prodromal Alzheimer’s disease via pattern classification of MRI. Neurobiol Aging 29:514–523CrossRefPubMed Davatzikos C, Fan Y, Wu X et al (2006) Detection of prodromal Alzheimer’s disease via pattern classification of MRI. Neurobiol Aging 29:514–523CrossRefPubMed
30.
go back to reference Whitwell JL, Shiung MM, Przybelski SA et al (2007) MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70:512–520CrossRefPubMed Whitwell JL, Shiung MM, Przybelski SA et al (2007) MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70:512–520CrossRefPubMed
31.
go back to reference Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949CrossRefPubMed Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949CrossRefPubMed
32.
go back to reference Carmichael OT, Kuller LH, Lopez OL et al (2007) Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer Dis Assoc Disord 21:14–24CrossRefPubMed Carmichael OT, Kuller LH, Lopez OL et al (2007) Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer Dis Assoc Disord 21:14–24CrossRefPubMed
33.
go back to reference Ridha BH, Barnes J, Bartlett JW et al (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5:828–834CrossRefPubMed Ridha BH, Barnes J, Bartlett JW et al (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5:828–834CrossRefPubMed
34.
go back to reference Scahill RI, Schott JM, Stevens JM et al (2004) Fluid registration of serial MRI: identifying regional changes in Alzheimer’s disease. Neurobiol Aging 25:269–269 Scahill RI, Schott JM, Stevens JM et al (2004) Fluid registration of serial MRI: identifying regional changes in Alzheimer’s disease. Neurobiol Aging 25:269–269
35.
go back to reference Lam LC, Lui VW, Tam CW et al (2005) Subjective memory complaints in Chinese subjects with mild cognitive impairment and early Alzheimer’s disease. Int J Geriatr Psychiatry 20:876–82CrossRefPubMed Lam LC, Lui VW, Tam CW et al (2005) Subjective memory complaints in Chinese subjects with mild cognitive impairment and early Alzheimer’s disease. Int J Geriatr Psychiatry 20:876–82CrossRefPubMed
36.
go back to reference Visser PJ, Kester A, Jolles J et al (2006) Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 67:1201–7CrossRefPubMed Visser PJ, Kester A, Jolles J et al (2006) Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 67:1201–7CrossRefPubMed
37.
go back to reference Berg L, Mckeel DW Jr, Miller JP et al (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55:326–35CrossRefPubMed Berg L, Mckeel DW Jr, Miller JP et al (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55:326–35CrossRefPubMed
38.
go back to reference MRC CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–75CrossRef MRC CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–75CrossRef
39.
go back to reference Barnes J, Whitwell JL, Frost C et al (2006) Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 63:1434–1439CrossRefPubMed Barnes J, Whitwell JL, Frost C et al (2006) Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 63:1434–1439CrossRefPubMed
40.
go back to reference Fearing MA, Bigler ED, Norton M et al (2007) Autopsy-confirmed Alzheimer’s disease versus clinically diagnosed Alzheimer’s disease in the Cache County Study on Memory and Aging: a comparison of quantitative MRI and neuropsychological findings. J Clin Exp Neuropsychol 29:553–60CrossRefPubMed Fearing MA, Bigler ED, Norton M et al (2007) Autopsy-confirmed Alzheimer’s disease versus clinically diagnosed Alzheimer’s disease in the Cache County Study on Memory and Aging: a comparison of quantitative MRI and neuropsychological findings. J Clin Exp Neuropsychol 29:553–60CrossRefPubMed
Metadata
Title
Accelerating regional atrophy rates in the progression from normal aging to Alzheimer’s disease
Authors
Jasper D. Sluimer
Wiesje M. van der Flier
Giorgos B. Karas
Ronald van Schijndel
Josephine Barnes
Richard G. Boyes
Keith S. Cover
Sílvia D. Olabarriaga
Nick C. Fox
Philip Scheltens
Hugo Vrenken
Frederik Barkhof
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
European Radiology / Issue 12/2009
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-009-1512-5

Other articles of this Issue 12/2009

European Radiology 12/2009 Go to the issue