Skip to main content
Top
Published in: European Radiology 11/2004

01-11-2004 | Physics

Digital detectors for mammography: the technical challenges

Authors: A. Noel, F. Thibault

Published in: European Radiology | Issue 11/2004

Login to get access

Abstract

This paper reviews the different techniques available and competing for full-field digital mammography. The detectors are described in their principles: photostimulable storage phosphor plates inserted as a cassette in a conventional mammography unit, dedicated active matrix detectors (i.e., flat-panel, thin-film transistor-based detectors) and scanning systems, using indirect and direct X-ray conversion. The main parameters that characterize the performances of the current systems and influence the quality of digital images are briefly explained: spatial resolution, detective quantum efficiency and modulation transfer function. Overall performances are often the result of compromises in the choice of technology.
Glossary
Photodiode (or light-sensitive diode)
Semi-conductor element converting light energy into electrical current. The intensity of the current generated, and therefore the quantity of electricity produced, are proportional to the light intensity (itself proportional to the incident irradiation). In the case of indirect conversion detectors, the electronic charges produced are stored in a condenser. Detectors contain one photodiode per pixel.
Thin-film transistor (TFT)
Electronic component of an active matrix in which each element (one element per pixel) acts like a switch integrated in the reading circuit to determine the quantity of electronic charges produced by the photodiode and stored in the condenser.
Charge coupled device (CCD)
Electronic component converting light energy into electrical current. The quantity of electricity produced, proportional to the light intensity, is stored directly in the device. CCDs are used in indirect conversion detectors.
Structured scintillator
Scintillator whose crystalline structure is composed of needle-like elements that channel light down the length of the crystal and minimize lateral spread.
Spatial resolution
Spatial resolution is expressed in cycles per mm or, more commonly, in line-pairs per millimeter (lp/mm) and indicates the size of the smallest structure detectable on a test object measured under laboratory conditions, which increase contrast while reducing noise. It is measured by X-raying a phantom composed of periodic elements (alternating bars and spaces) of increasing frequency (bars of decreasing thickness).
Nyquist (or cut-off) frequency
Corresponds to a particular value of spatial resolution defined by the pixel size of the digital detector. According to the sampling theorem, the Nyquist frequency is equal to 1/[2 × pixel size (mm)]. It is expressed in lp/mm. Objects with a spatial frequency higher than the Nyquist frequency will either not be visualized or will be visualized incorrectly (aliasing).
Modulation transfer function (MTF)
Describe the ability of an imaging system to transfer the contrast of a structure to the final recorded image. In practice, this reflects the loss of contrast induced by the imaging system as a function of spatial resolution, i.e., spatial frequency expressed in line-pairs per millimeter. By definition, the MTF is equal to 1 for a spatial frequency of zero and decreases as far as 0 with increasing spatial frequency.
Spatial frequency
The frequency spectrum of an image can be obtained by its Fourier transform. More simply, by analogy with a periodic vibratory phenomenon specified by its frequency (number of cycles per unit of time, usually expressed in hertz, Hz), a pattern in the image is characterized by its repetition in space expressed in cycles or line-pairs per unit of length. An object with dimension d (for example, d=0.08 mm) contained in the image would be associated with a spatial frequency of 1/2d (1/2×0.08=6.25 lp/mm).
Aliasing
Phenomenon resulting from signal undersampling by a digital imaging system, either the detector or reading system (PSP laser beam). Objects with a spatial frequency higher than the Nyquist frequency of the imaging system are replicated as artifacts around the Nyquist frequency that superimpose on objects with lower frequencies. The low frequency noise level is therefore increased, which degrades low contrast object detection.
Detective quantum efficiency (DQE)
DQE characterizes the ability of a detector to use the transmitted photons (through the breast, bucky and grid) at the detector input. It is expressed as the ratio of the squares of the signal-to-noise ratio at the detector input and detector output. An ideal system, which would not add any noise, i.e., which would use all photons reaching the detector, would have a DQE equal to 1. A real detector is increasingly “better” as its DQE approaches 1. The DQE of a system is maximal for zero spatial frequency and decreases with increasing spatial frequency.
Literature
1.
go back to reference Feig SA, Yaffe MJ (1995) Digital mammography, computer-aided diagnosis, and telemammography. Radiol Clin North Am 33:1205–1230PubMed Feig SA, Yaffe MJ (1995) Digital mammography, computer-aided diagnosis, and telemammography. Radiol Clin North Am 33:1205–1230PubMed
2.
go back to reference Haus AG, Yaffe MJ (2000) Screen-film and digital mammography. Image quality and radiation dose considerations. Radiol Clin North Am 38:871–898PubMed Haus AG, Yaffe MJ (2000) Screen-film and digital mammography. Image quality and radiation dose considerations. Radiol Clin North Am 38:871–898PubMed
3.
4.
go back to reference Chotas HG, Dobbins JT III, Ravin CE (1999) Principles of digital radiography with large area, electronically readable detectors: a review of the basics. Radiology 210:595–599PubMed Chotas HG, Dobbins JT III, Ravin CE (1999) Principles of digital radiography with large area, electronically readable detectors: a review of the basics. Radiology 210:595–599PubMed
5.
go back to reference Gould RG (1997) New detector technology. In: Frey GD, Sprawls P (eds) Proceedings of the AAPM summer school. The expanding role of medical physics in diagnostic imaging. Advanced Medical Publishing, Madison, pp 85–105. ISBN 1-888340-09-6 Gould RG (1997) New detector technology. In: Frey GD, Sprawls P (eds) Proceedings of the AAPM summer school. The expanding role of medical physics in diagnostic imaging. Advanced Medical Publishing, Madison, pp 85–105. ISBN 1-888340-09-6
6.
go back to reference D’Orsi CJ (2002) Digital mammography. Curr Womens Health Rep 2:124–127PubMed D’Orsi CJ (2002) Digital mammography. Curr Womens Health Rep 2:124–127PubMed
7.
go back to reference Noel A, Stines J (2003) La mammographie numérique: les capteurs. J Le Sein 13:206–210 Noel A, Stines J (2003) La mammographie numérique: les capteurs. J Le Sein 13:206–210
8.
go back to reference von Seggern H, Voigt T, Knupfer W, Lange G (1998) Physical model of photostimulated luminescence of X-ray irradiated BaFBr:Eu2+. J Appl Phys 64:1405–1412CrossRef von Seggern H, Voigt T, Knupfer W, Lange G (1998) Physical model of photostimulated luminescence of X-ray irradiated BaFBr:Eu2+. J Appl Phys 64:1405–1412CrossRef
9.
go back to reference Yaffe MJ (2000) Digital mammography. In: Beuttel J, Kundel HL, Van Metter RL (eds) Handbook of medical imaging 1. SPIE, Bellingham, pp 329–372 Yaffe MJ (2000) Digital mammography. In: Beuttel J, Kundel HL, Van Metter RL (eds) Handbook of medical imaging 1. SPIE, Bellingham, pp 329–372
10.
go back to reference Samei E, Seibert JA, Willis CE, Flynn MJ, Mah E, Junck KL (2001) Performance evaluation of computed radiography systems. Med Phys 28:361–371CrossRefPubMed Samei E, Seibert JA, Willis CE, Flynn MJ, Mah E, Junck KL (2001) Performance evaluation of computed radiography systems. Med Phys 28:361–371CrossRefPubMed
11.
go back to reference Nakano Y, Gido T, Honda S, Maezawa A, Wakamatsu H, Yanagita T (2002) Improved computed radiography image quality from a BaFI:Eu photostimulable phosphor plate. Med Phys 29:592–597CrossRefPubMed Nakano Y, Gido T, Honda S, Maezawa A, Wakamatsu H, Yanagita T (2002) Improved computed radiography image quality from a BaFI:Eu photostimulable phosphor plate. Med Phys 29:592–597CrossRefPubMed
12.
go back to reference Arakawa S, Yasuda H, Kohda K, Suzuki T (2000) Improvement of image quality in CR mammography by detection of emission from dual sides of an imaging plate. In: Dobbins JT III, Boone JM (eds) Medical imaging 2000: physics of medical imaging. Proceedings of SPIE 3977. SPIE, Bellingham, pp 590–600 Arakawa S, Yasuda H, Kohda K, Suzuki T (2000) Improvement of image quality in CR mammography by detection of emission from dual sides of an imaging plate. In: Dobbins JT III, Boone JM (eds) Medical imaging 2000: physics of medical imaging. Proceedings of SPIE 3977. SPIE, Bellingham, pp 590–600
13.
go back to reference Cowen AR, Parkin GJ, Hawkridge P (1997) Direct digital mammography image acquisition. Eur Radiol 7:918–930CrossRefPubMed Cowen AR, Parkin GJ, Hawkridge P (1997) Direct digital mammography image acquisition. Eur Radiol 7:918–930CrossRefPubMed
14.
go back to reference Rahn JT, Lemmi F, Lu JP, Mei P, Apte RB, Street RA, Lujan R, Weisfield RL, Heanue JA (1999) High resolution X-ray imaging using amorphous silicon flat-panel arrays. IEEE Trans Nucl Sci 46:457–461CrossRef Rahn JT, Lemmi F, Lu JP, Mei P, Apte RB, Street RA, Lujan R, Weisfield RL, Heanue JA (1999) High resolution X-ray imaging using amorphous silicon flat-panel arrays. IEEE Trans Nucl Sci 46:457–461CrossRef
15.
go back to reference Herrmann A, Bonel H, Stabler A, Kulinna C, Glaser C, Holzknecht N, Geiger B, Schatzl M, Reiser F (2002) Chest imaging with flat-panel detector at low and standard doses: comparison with storage phosphor technology in normal patients. Eur Radiol 12:385–390CrossRefPubMed Herrmann A, Bonel H, Stabler A, Kulinna C, Glaser C, Holzknecht N, Geiger B, Schatzl M, Reiser F (2002) Chest imaging with flat-panel detector at low and standard doses: comparison with storage phosphor technology in normal patients. Eur Radiol 12:385–390CrossRefPubMed
16.
go back to reference Kotter E, Langer M (2002) Digital radiography with large-area flat-panel detectors. Eur Radiol 12:2562–2570PubMed Kotter E, Langer M (2002) Digital radiography with large-area flat-panel detectors. Eur Radiol 12:2562–2570PubMed
17.
go back to reference Muller S (1999) Full-field digital mammography designed as a complete system. Eur J Radiol 31:25–34CrossRefPubMed Muller S (1999) Full-field digital mammography designed as a complete system. Eur J Radiol 31:25–34CrossRefPubMed
18.
go back to reference Berns EA, Hendrick RE, Cutter GR (2003) Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose. Med Phys 30:334–340CrossRefPubMed Berns EA, Hendrick RE, Cutter GR (2003) Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose. Med Phys 30:334–340CrossRefPubMed
19.
go back to reference Lee DL, Cheung LK, Palecki EF, Jeromin LS (1996) A discussion on resolution and dynamic range of Se-TFT direct digital radiographic detector. In: Van Metter RL, Beutel J (eds) Medical imaging 1996: physics of medical imaging. Proceedings of SPIE 2708. SPIE, Bellingham, pp 511–522 Lee DL, Cheung LK, Palecki EF, Jeromin LS (1996) A discussion on resolution and dynamic range of Se-TFT direct digital radiographic detector. In: Van Metter RL, Beutel J (eds) Medical imaging 1996: physics of medical imaging. Proceedings of SPIE 2708. SPIE, Bellingham, pp 511–522
20.
go back to reference Stone MF, Zhao W, Jacak BV, O’Connor P, Yu B, Rehak P (2002) The X-ray sensitivity of amorphous selenium for mammography. Med Phys 29:319–324CrossRefPubMed Stone MF, Zhao W, Jacak BV, O’Connor P, Yu B, Rehak P (2002) The X-ray sensitivity of amorphous selenium for mammography. Med Phys 29:319–324CrossRefPubMed
21.
go back to reference Zhao W, Ji WG, Debrie A, Rowlands JA (2003) Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med Phys 30:254–263CrossRefPubMed Zhao W, Ji WG, Debrie A, Rowlands JA (2003) Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med Phys 30:254–263CrossRefPubMed
22.
go back to reference Polischuk BT, Rougeot H, Wong K, Debrie A, Poliquin E, Hansroul M, Martin JP, Truong TT, Choquette M, Laperriere L, Shukri Z (1999) Direct conversion detector for digital mammography. In: Boone JM, Dobbins JT III (eds) Medical imaging 1999: physics of medical imaging. Proceedings of SPIE 3659. SPIE, Bellingham, pp 417–425 Polischuk BT, Rougeot H, Wong K, Debrie A, Poliquin E, Hansroul M, Martin JP, Truong TT, Choquette M, Laperriere L, Shukri Z (1999) Direct conversion detector for digital mammography. In: Boone JM, Dobbins JT III (eds) Medical imaging 1999: physics of medical imaging. Proceedings of SPIE 3659. SPIE, Bellingham, pp 417–425
23.
go back to reference Fahrig R, Rowlands JA, Yaffe MJ (1996) X-ray imaging with amorphous selenium: optimal spectra for digital mammography. Med Phys 23:557–567CrossRefPubMed Fahrig R, Rowlands JA, Yaffe MJ (1996) X-ray imaging with amorphous selenium: optimal spectra for digital mammography. Med Phys 23:557–567CrossRefPubMed
24.
go back to reference Rowlands JA, Hunter DM, Araj N (1991) X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography. Med Phys 18:421–431CrossRefPubMed Rowlands JA, Hunter DM, Araj N (1991) X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography. Med Phys 18:421–431CrossRefPubMed
25.
go back to reference Paulus DD (1980) Xeroradiography: an in-depth review. Crit Rev Diagn Imaging 12:309–384 Paulus DD (1980) Xeroradiography: an in-depth review. Crit Rev Diagn Imaging 12:309–384
26.
go back to reference Tesic MM, Fisher Piccaro M, Munier B (1999) Full field digital mammography scanner. Eur J Radiol 31:2–17CrossRefPubMed Tesic MM, Fisher Piccaro M, Munier B (1999) Full field digital mammography scanner. Eur J Radiol 31:2–17CrossRefPubMed
27.
go back to reference Besson GM, Koch A, Tesic M, Sottoriva R, Prieur-Drevron P, Munier B, Calais E, De Groot P (2002) Design and evaluation of a slot-scanning full-field digital mammography system. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2002: physics of medical imaging. Proceedings of SPIE 4682. SPIE, Bellingham, pp 457–468 Besson GM, Koch A, Tesic M, Sottoriva R, Prieur-Drevron P, Munier B, Calais E, De Groot P (2002) Design and evaluation of a slot-scanning full-field digital mammography system. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2002: physics of medical imaging. Proceedings of SPIE 4682. SPIE, Bellingham, pp 457–468
28.
go back to reference Thunberg SJ, Francke T, Egerstrom J, Eklund M, Ericsson L, Kristoffersson T, Peskov VN, Rantanen J, Sokolov S, Svedenhag P, Ullberg CK, Weber N (2002) Evaluation of a photon counting mammography system. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2002: physics of medical imaging. Proceedings of SPIE 4682. SPIE, Bellingham, pp 202–208 Thunberg SJ, Francke T, Egerstrom J, Eklund M, Ericsson L, Kristoffersson T, Peskov VN, Rantanen J, Sokolov S, Svedenhag P, Ullberg CK, Weber N (2002) Evaluation of a photon counting mammography system. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2002: physics of medical imaging. Proceedings of SPIE 4682. SPIE, Bellingham, pp 202–208
29.
go back to reference Dainty JC, Shaw R (1974) Medical imaging. Image science. Academic, London. ISBN 0-12-200850-2 Dainty JC, Shaw R (1974) Medical imaging. Image science. Academic, London. ISBN 0-12-200850-2
30.
go back to reference Hendee WR, Ritenour ER (2002) Medical imaging physics, 4th edn. Wiley, New York. ISBN 0-471-38226-4 Hendee WR, Ritenour ER (2002) Medical imaging physics, 4th edn. Wiley, New York. ISBN 0-471-38226-4
31.
go back to reference Lundqvist M, Danielsson M, Cederström B, Chmill V, Chuntonov A, Aslund M (2003) Measurements on a full-field digital mammography system with a photon counting crystalline silicone detector. In: Yaffe MJ, Antonuk LE (eds) Medical imaging 2003: physics of medical imaging. Proceedings of SPIE 5030. SPIE, Bellingham, pp 547–552 Lundqvist M, Danielsson M, Cederström B, Chmill V, Chuntonov A, Aslund M (2003) Measurements on a full-field digital mammography system with a photon counting crystalline silicone detector. In: Yaffe MJ, Antonuk LE (eds) Medical imaging 2003: physics of medical imaging. Proceedings of SPIE 5030. SPIE, Bellingham, pp 547–552
32.
go back to reference Lundqvist M (2003) Silicon strip detectors for scanned multi-slit X-ray imaging. PhD Thesis, Kungl Tekniska Högskolan, Fysiska Institutionen, Stockholm. ISBN 91-7283-512-5, ISSN 0280-316X Lundqvist M (2003) Silicon strip detectors for scanned multi-slit X-ray imaging. PhD Thesis, Kungl Tekniska Högskolan, Fysiska Institutionen, Stockholm. ISBN 91-7283-512-5, ISSN 0280-316X
33.
go back to reference Mikulec B (2000) Single photon detection with semiconductor pixel arrays for medical imaging applications. PhD Thesis, University of Vienna, Austria. CERN-THESIS 2000-021 Mikulec B (2000) Single photon detection with semiconductor pixel arrays for medical imaging applications. PhD Thesis, University of Vienna, Austria. CERN-THESIS 2000-021
34.
go back to reference Danielsson M, Bornefalk H, Cederström B, Chmill V, Hasewaga B, Lundqvist M, Nygren D (2000) Dose efficient system for digital mammography. In: Dobbins JT III, Boone JM (eds) Medical Imaging 2000: physics of medical imaging. Proceedings of SPIE 3977. SPIE, Bellingham, pp 239–249 Danielsson M, Bornefalk H, Cederström B, Chmill V, Hasewaga B, Lundqvist M, Nygren D (2000) Dose efficient system for digital mammography. In: Dobbins JT III, Boone JM (eds) Medical Imaging 2000: physics of medical imaging. Proceedings of SPIE 3977. SPIE, Bellingham, pp 239–249
35.
go back to reference Francke T, Eklund M, Ericsson L, Kristoffersson T, Peskov VN, Rantanen J, Sokolov S, Soderman JE, Ullberg CK, Weber N (2001) Dose reduction using photon counting X-ray imaging. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2001: physics of medical imaging. Proceedings of SPIE 4320. SPIE, Bellingham, pp 127–132 Francke T, Eklund M, Ericsson L, Kristoffersson T, Peskov VN, Rantanen J, Sokolov S, Soderman JE, Ullberg CK, Weber N (2001) Dose reduction using photon counting X-ray imaging. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2001: physics of medical imaging. Proceedings of SPIE 4320. SPIE, Bellingham, pp 127–132
36.
go back to reference Dobbins JT III (1999) Determination of MTF, NPS and DQE in practice. In: Mansson LG (ed) Lectures notes: physics of medical X-ray imaging, European Commission, ERPET Course, Malmö, 8–12 June, pp F1–F8 Dobbins JT III (1999) Determination of MTF, NPS and DQE in practice. In: Mansson LG (ed) Lectures notes: physics of medical X-ray imaging, European Commission, ERPET Course, Malmö, 8–12 June, pp F1–F8
37.
go back to reference Dobbins JT III (1995) Effect of undersampling on the proper interpretation of modulation transfer function, noise power spectra and noise equivalent quanta of digital imaging systems. Med Phys 22:171–181CrossRefPubMed Dobbins JT III (1995) Effect of undersampling on the proper interpretation of modulation transfer function, noise power spectra and noise equivalent quanta of digital imaging systems. Med Phys 22:171–181CrossRefPubMed
38.
go back to reference Moy JP (2000) Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: is the MTF a relevant parameter? Med Phys 27:86–93 Moy JP (2000) Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: is the MTF a relevant parameter? Med Phys 27:86–93
39.
go back to reference Albert M, Beideck DJ, Bakic PR, Maidment AD (2002) Aliasing effects in digital images of line-pair phantoms. Med Phys 29:1716–1718CrossRefPubMed Albert M, Beideck DJ, Bakic PR, Maidment AD (2002) Aliasing effects in digital images of line-pair phantoms. Med Phys 29:1716–1718CrossRefPubMed
40.
go back to reference Sivaramakrishna R, Obuchowski NA, Chilcote WA, Cardenosa G, Powell KA (2000) Comparing the performance of mammographic enhancement algorithms: a preference study. Am J Roentgenol 175:45–51 Sivaramakrishna R, Obuchowski NA, Chilcote WA, Cardenosa G, Powell KA (2000) Comparing the performance of mammographic enhancement algorithms: a preference study. Am J Roentgenol 175:45–51
41.
go back to reference Pisano ED, Cole EB, Kistner EO, Muller KE, Hemminger BM, Brown ML, Johnston RE, Kuzmiak CM, Braeuning MP, Freimanis RI, Soo MS, Baker JA, Walsh R (2002) Interpretation of digital mammograms: comparison of speed and accuracy of soft-copy versus printed-film display. Radiology 223:483–488PubMed Pisano ED, Cole EB, Kistner EO, Muller KE, Hemminger BM, Brown ML, Johnston RE, Kuzmiak CM, Braeuning MP, Freimanis RI, Soo MS, Baker JA, Walsh R (2002) Interpretation of digital mammograms: comparison of speed and accuracy of soft-copy versus printed-film display. Radiology 223:483–488PubMed
42.
go back to reference Mainprize JG, Ford NL, Yin S, Gordon EE, Hamilton WJ, Tumer TO, Yaffe MJ (2002) A CdZnTe slot-scanned detector for digital mammography. Med Phys 29:2767–2781CrossRefPubMed Mainprize JG, Ford NL, Yin S, Gordon EE, Hamilton WJ, Tumer TO, Yaffe MJ (2002) A CdZnTe slot-scanned detector for digital mammography. Med Phys 29:2767–2781CrossRefPubMed
43.
go back to reference Street RA, Mulato M, Schieber MM, Hermon H, Shah KS, Bennett PR, Dmitryev Y, Ho J, Lau R, Meerson E, Ready SE, Reisman B, Sado Y, Van Schuylenbergh K, Vilensky AI, Zuck A (2001) Comparative study of PbI2 and HgI2 as direct detector for high-resolution X-ray image sensors. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2001: physics of medical imaging. Proceedings of SPIE 4320. SPIE, Bellingham, pp 1–12 Street RA, Mulato M, Schieber MM, Hermon H, Shah KS, Bennett PR, Dmitryev Y, Ho J, Lau R, Meerson E, Ready SE, Reisman B, Sado Y, Van Schuylenbergh K, Vilensky AI, Zuck A (2001) Comparative study of PbI2 and HgI2 as direct detector for high-resolution X-ray image sensors. In: Antonuk LE, Yaffe MJ (eds) Medical imaging 2001: physics of medical imaging. Proceedings of SPIE 4320. SPIE, Bellingham, pp 1–12
44.
go back to reference Amendolia SR, Bisogni MG, Bottigli U, Ciocci MA, Delogu P, Dipasquale G, Fantacci ME, Giannelli M, Maestro P, Marzulli VM, Pernigotti E, Rosso V, Stefanini A, Stumbo S (2000) Low contrasting imaging with a aGaAs pixel digital detector. IEEE Trans Nucl Sci 47:1478–1486CrossRef Amendolia SR, Bisogni MG, Bottigli U, Ciocci MA, Delogu P, Dipasquale G, Fantacci ME, Giannelli M, Maestro P, Marzulli VM, Pernigotti E, Rosso V, Stefanini A, Stumbo S (2000) Low contrasting imaging with a aGaAs pixel digital detector. IEEE Trans Nucl Sci 47:1478–1486CrossRef
45.
go back to reference Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect radiography systems. Med Phys 30:608–622CrossRefPubMed Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect radiography systems. Med Phys 30:608–622CrossRefPubMed
46.
go back to reference van Engen R, Young K, Bosmans H, Thijssen M (2003) Addendum on digital mammography to the European protocol for the quality control of the physical and technical aspects of mammography screening. Version 1, European Commission, November, EUREF office, Nijmegen van Engen R, Young K, Bosmans H, Thijssen M (2003) Addendum on digital mammography to the European protocol for the quality control of the physical and technical aspects of mammography screening. Version 1, European Commission, November, EUREF office, Nijmegen
Metadata
Title
Digital detectors for mammography: the technical challenges
Authors
A. Noel
F. Thibault
Publication date
01-11-2004
Publisher
Springer-Verlag
Published in
European Radiology / Issue 11/2004
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-004-2446-6

Other articles of this Issue 11/2004

European Radiology 11/2004 Go to the issue

Calendar of Events

November 2004