Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2019

01-01-2019 | Original Article

Plasma and brain pharmacokinetics of letrozole and drug interaction studies with temozolomide in NOD-scid gamma mice and sprague dawley rats

Authors: Priyanka Arora, Courtney Huff Adams, Gary Gudelsky, Biplab DasGupta, Pankaj B. Desai

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2019

Login to get access

Abstract

Purpose

The aromatase inhibitor, letrozole, is being investigated in experimental animal models as a novel treatment for high-grade gliomas (HGGs). To facilitate optimal dosing for such studies, we evaluated the plasma and brain pharmacokinetics (PK) of letrozole in NOD-scid gamma (NSG) mice, which are frequently employed for assessing efficacy against patient-derived tumor cells. Furthermore, we evaluated the potential PK interactions between letrozole and temozolomide (TMZ) in Sprague–Dawley rats.

Methods

NSG mice were administered letrozole (8 mg/kg; i.p) as a single or multiple dose (b.i.d, 10 days). Brain tissue and blood samples were collected over 24 h. Letrozole and TMZ interaction study employed jugular vein-cannulated rats (three groups; TMZ alone, letrozole alone and TMZ + letrozole). Intracerebral microdialysis was performed for brain extracellular fluid (ECF) collection simultaneously with venous blood sampling. Drug levels were measured employing HPLC and PK analysis was conducted using Phoenix WinNonlin®.

Results

In NSG mice, peak plasma and brain tissue letrozole concentrations (Cmax) were 3–4 and 0.8–0.9 µg/ml, respectively. The elimination half-life was 2.6 h with minimal accumulation following multiple dosing. In the drug interaction study, no PK changes were evident when TMZ and letrozole were given in combination. For instance, peak plasma and brain ECF TMZ levels when given alone were 14.7 ± 1.1 and 4.6 ± 0.6 µg/ml, respectively, and 12.6 ± 2.4 and 3.4 ± 0.8 µg/ml, respectively, when given with letrozole.

Conclusions

These results will guide the optimization of dosing regimen for further development of letrozole for HGG treatment.
Literature
1.
go back to reference Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2010–2014. Neuro Oncol 19(suppl_5):v1–v88CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2010–2014. Neuro Oncol 19(suppl_5):v1–v88CrossRefPubMedPubMedCentral
2.
go back to reference Ostrom QT, Gittleman H, Stetson L, Virk S, Barnholtz-Sloan JS (2018) Epidemiology of intracranial gliomas. Prog Neurol Surg 30:1–11CrossRef Ostrom QT, Gittleman H, Stetson L, Virk S, Barnholtz-Sloan JS (2018) Epidemiology of intracranial gliomas. Prog Neurol Surg 30:1–11CrossRef
3.
go back to reference Franceschi E, Minichillo S, Brandes AA (2017) Pharmacotherapy of glioblastoma: Established treatments and emerging concepts. CNS Drugs 31(8):675–684CrossRefPubMed Franceschi E, Minichillo S, Brandes AA (2017) Pharmacotherapy of glioblastoma: Established treatments and emerging concepts. CNS Drugs 31(8):675–684CrossRefPubMed
4.
6.
go back to reference Miyajima M, Kusuhara H, Takahashi K et al (2013) Investigation of the effect of active efflux at the blood-brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci 102(9):3309–3319CrossRefPubMed Miyajima M, Kusuhara H, Takahashi K et al (2013) Investigation of the effect of active efflux at the blood-brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci 102(9):3309–3319CrossRefPubMed
8.
go back to reference Kim SS, Harford JB, Pirollo KF, Chang EH (2015) Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun 468(3):485–489CrossRefPubMedPubMedCentral Kim SS, Harford JB, Pirollo KF, Chang EH (2015) Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun 468(3):485–489CrossRefPubMedPubMedCentral
9.
go back to reference Lonning PE, Geisler J, Bhatnager A (2003) Development of aromatase inhibitors and their pharmacologic profile. Am J Clin Oncol 26(4):S3–S8CrossRefPubMed Lonning PE, Geisler J, Bhatnager A (2003) Development of aromatase inhibitors and their pharmacologic profile. Am J Clin Oncol 26(4):S3–S8CrossRefPubMed
10.
go back to reference Dave N, Sengaonkar V, Chow LML, Kendler A, LaSance K, Desai PB (2015) ATPS-13 Aromatase expression in high grade gliomas: a potential new target for therapy. Neurooncol 17(Suppl 5):v20–v21 Dave N, Sengaonkar V, Chow LML, Kendler A, LaSance K, Desai PB (2015) ATPS-13 Aromatase expression in high grade gliomas: a potential new target for therapy. Neurooncol 17(Suppl 5):v20–v21
11.
go back to reference Duenas Jimenez JM, Candanedo Arellano A, Santerre A et al (2014) Aromatase and estrogen receptor alpha mRNA expression as prognostic biomarkers in patients with astrocytomas. J Neurooncol 119(2):275–284CrossRefPubMed Duenas Jimenez JM, Candanedo Arellano A, Santerre A et al (2014) Aromatase and estrogen receptor alpha mRNA expression as prognostic biomarkers in patients with astrocytomas. J Neurooncol 119(2):275–284CrossRefPubMed
12.
go back to reference Dave N, Gudelsky GA, Desai PB (2013) The pharmacokinetics of letrozole in brain and brain tumor in rats with orthotopically implanted C6 glioma, assessed using intracerebral microdialysis. Cancer Chemother Pharmacol 72(2):349–357CrossRefPubMed Dave N, Gudelsky GA, Desai PB (2013) The pharmacokinetics of letrozole in brain and brain tumor in rats with orthotopically implanted C6 glioma, assessed using intracerebral microdialysis. Cancer Chemother Pharmacol 72(2):349–357CrossRefPubMed
13.
go back to reference Dave N, Chow LM, Gudelsky GA, LaSance K, Qi X, Desai PB (2015) Preclinical pharmacological evaluation of letrozole as a novel treatment for gliomas. Mol Cancer Ther 14(4):857–864CrossRefPubMedPubMedCentral Dave N, Chow LM, Gudelsky GA, LaSance K, Qi X, Desai PB (2015) Preclinical pharmacological evaluation of letrozole as a novel treatment for gliomas. Mol Cancer Ther 14(4):857–864CrossRefPubMedPubMedCentral
14.
go back to reference Tivnan A, Heilinger T, Ramsey JM et al (2017) Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget 8(10):16605–16620CrossRefPubMedPubMedCentral Tivnan A, Heilinger T, Ramsey JM et al (2017) Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget 8(10):16605–16620CrossRefPubMedPubMedCentral
15.
go back to reference Okada S, Vaeteewoottacharn K, Kariya R (2018) Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chem Pharm Bull (Tokyo) 66(3):225–230CrossRef Okada S, Vaeteewoottacharn K, Kariya R (2018) Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chem Pharm Bull (Tokyo) 66(3):225–230CrossRef
16.
17.
go back to reference Zhou Q, Facciponte J, Jin M, Shen Q, Lin Q (2014) Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett 344:13–19CrossRefPubMed Zhou Q, Facciponte J, Jin M, Shen Q, Lin Q (2014) Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett 344:13–19CrossRefPubMed
18.
go back to reference Apparaju SK, Gudelsky GA, Desai PB (2008) Pharmacokinetics of gemcitabine in tumor and non-tumor extracellular fluid of brain: an in vivo assessment in rats employing intracerebral microdialysis. Cancer Chemother Pharmacol 61(2):223–229CrossRefPubMed Apparaju SK, Gudelsky GA, Desai PB (2008) Pharmacokinetics of gemcitabine in tumor and non-tumor extracellular fluid of brain: an in vivo assessment in rats employing intracerebral microdialysis. Cancer Chemother Pharmacol 61(2):223–229CrossRefPubMed
19.
go back to reference Paxinos G, Watson CR, Emson PC (1980) Ache-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 3(2):129–149CrossRefPubMed Paxinos G, Watson CR, Emson PC (1980) Ache-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 3(2):129–149CrossRefPubMed
20.
go back to reference Gilant E, Kaza M, Szlagowska A, Serafin-Byczak K, Rudzki PJ (2012) Validated HPLC method for determination of temozolomide in human plasma. Acta Pol Pharm 69(6):1347–1355PubMed Gilant E, Kaza M, Szlagowska A, Serafin-Byczak K, Rudzki PJ (2012) Validated HPLC method for determination of temozolomide in human plasma. Acta Pol Pharm 69(6):1347–1355PubMed
21.
go back to reference Baker SD, Wirth M, Statkevich P et al (1999) Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5(2):309–317PubMed Baker SD, Wirth M, Statkevich P et al (1999) Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5(2):309–317PubMed
22.
go back to reference Reyderman L, Statkevich P, Thonoor CM, Patrick J, Batra VK, Wirth M (2004) Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 34(5):487–500CrossRefPubMed Reyderman L, Statkevich P, Thonoor CM, Patrick J, Batra VK, Wirth M (2004) Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 34(5):487–500CrossRefPubMed
23.
go back to reference Liu XD, Xie L, Zhong Y, Li CX (2000) Gender difference in letrozole pharmacokinetics in rats. Acta Pharmacol Sin 21(8):680–684PubMed Liu XD, Xie L, Zhong Y, Li CX (2000) Gender difference in letrozole pharmacokinetics in rats. Acta Pharmacol Sin 21(8):680–684PubMed
24.
go back to reference Buzdar AU, Robertson JF, Eiermann W, Nabholtz JM (2002) An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane. Cancer 95(9):2006–2016CrossRefPubMed Buzdar AU, Robertson JF, Eiermann W, Nabholtz JM (2002) An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane. Cancer 95(9):2006–2016CrossRefPubMed
25.
go back to reference Buzdar AU (2003) Pharmacology and pharmacokinetics of the newer generation aromatase inhibitors. Clin Cancer Res 9(1 Pt 2):468S–468S72SPubMed Buzdar AU (2003) Pharmacology and pharmacokinetics of the newer generation aromatase inhibitors. Clin Cancer Res 9(1 Pt 2):468S–468S72SPubMed
26.
go back to reference Wempe MF, Buchanan CM, Buchanan NL et al (2007) Pharmacokinetics of letrozole in male and female rats: Influence of complexation with hydroxybutenyl-beta cyclodextrin. J Pharm Pharmacol 59(6):795–802CrossRefPubMed Wempe MF, Buchanan CM, Buchanan NL et al (2007) Pharmacokinetics of letrozole in male and female rats: Influence of complexation with hydroxybutenyl-beta cyclodextrin. J Pharm Pharmacol 59(6):795–802CrossRefPubMed
27.
go back to reference Kalam A, Talegaonkar S, Vohora D (2017) Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice. Mol Cell Endocrinol 440:34–43CrossRefPubMed Kalam A, Talegaonkar S, Vohora D (2017) Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice. Mol Cell Endocrinol 440:34–43CrossRefPubMed
28.
go back to reference Murai K, Yamazaki H, Nakagawa K, Kawai R, Kamataki T (2009) Deactivation of anti-cancer drug letrozole to a carbinol metabolite by polymorphic cytochrome P450 2A6 in human liver microsomes. Xenobiotica 39(11):795–802CrossRefPubMed Murai K, Yamazaki H, Nakagawa K, Kawai R, Kamataki T (2009) Deactivation of anti-cancer drug letrozole to a carbinol metabolite by polymorphic cytochrome P450 2A6 in human liver microsomes. Xenobiotica 39(11):795–802CrossRefPubMed
29.
go back to reference Poca KS, Parente TE, Chagas LF et al (2017) Interstrain differences in the expression and activity of Cyp2a5 in the mouse liver. BMC Res Notes 10(1):125–017-2435-xCrossRefPubMedPubMedCentral Poca KS, Parente TE, Chagas LF et al (2017) Interstrain differences in the expression and activity of Cyp2a5 in the mouse liver. BMC Res Notes 10(1):125–017-2435-xCrossRefPubMedPubMedCentral
30.
go back to reference Zhou Q, Guo P, Kruh GD, Vicini P, Wang X, Gallo JM (2007) Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin Cancer Res 13(14):4271–4279CrossRefPubMed Zhou Q, Guo P, Kruh GD, Vicini P, Wang X, Gallo JM (2007) Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin Cancer Res 13(14):4271–4279CrossRefPubMed
31.
go back to reference Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin Cancer Res 15(22):7092–7098CrossRefPubMedPubMedCentral Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin Cancer Res 15(22):7092–7098CrossRefPubMedPubMedCentral
32.
go back to reference Ostermann S, Csajka C, Buclin T et al (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10(11):3728–3736CrossRefPubMed Ostermann S, Csajka C, Buclin T et al (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10(11):3728–3736CrossRefPubMed
33.
go back to reference Agarwala SS, Kirkwood JM (2000) Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 5(2):144–151CrossRefPubMed Agarwala SS, Kirkwood JM (2000) Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 5(2):144–151CrossRefPubMed
34.
go back to reference Munoz JL, Walker ND, Scotto KW, Rameshwar P (2015) Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett 367(1):69–75CrossRefPubMed Munoz JL, Walker ND, Scotto KW, Rameshwar P (2015) Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett 367(1):69–75CrossRefPubMed
35.
go back to reference Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, Dill C, Ehninger G, Schackert G, Krex D (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 20:175–181CrossRefPubMed Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, Dill C, Ehninger G, Schackert G, Krex D (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 20:175–181CrossRefPubMed
36.
go back to reference de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, van Tellingen O (2018) Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia 20:710–720CrossRefPubMedPubMedCentral de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, van Tellingen O (2018) Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia 20:710–720CrossRefPubMedPubMedCentral
37.
go back to reference Mahringer A, Fricker G (2010) BCRP at the blood-brain barrier: genomic regulation by 17beta-estradiol. Mol Pharm 7:1835–1847CrossRefPubMed Mahringer A, Fricker G (2010) BCRP at the blood-brain barrier: genomic regulation by 17beta-estradiol. Mol Pharm 7:1835–1847CrossRefPubMed
38.
go back to reference Hartz AM, Mahringer A, Miller DS, Bauer B (2010) 17-beta-Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab 30:1742–1755CrossRefPubMedPubMedCentral Hartz AM, Mahringer A, Miller DS, Bauer B (2010) 17-beta-Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab 30:1742–1755CrossRefPubMedPubMedCentral
39.
go back to reference Kleinow KM, Hummelke GC, Zhang Y, Uppu P, Baillif C (2004) Inhibition of P-glycoprotein transport: a mechanism for endocrine disruption in the channel catfish? Mar Environ Res 58:205–208CrossRefPubMed Kleinow KM, Hummelke GC, Zhang Y, Uppu P, Baillif C (2004) Inhibition of P-glycoprotein transport: a mechanism for endocrine disruption in the channel catfish? Mar Environ Res 58:205–208CrossRefPubMed
40.
Metadata
Title
Plasma and brain pharmacokinetics of letrozole and drug interaction studies with temozolomide in NOD-scid gamma mice and sprague dawley rats
Authors
Priyanka Arora
Courtney Huff Adams
Gary Gudelsky
Biplab DasGupta
Pankaj B. Desai
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2019
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-018-3705-6

Other articles of this Issue 1/2019

Cancer Chemotherapy and Pharmacology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine