Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2018

Open Access 01-04-2018 | Original Article

Monitoring of erlotinib in pancreatic cancer patients during long-time administration and comparison to a physiologically based pharmacokinetic model

Authors: Andrea Gruber, Martin Czejka, Philipp Buchner, Marie Kitzmueller, Nairi Kirchbaumer Baroian, Christian Dittrich, Azra Sahmanovic Hrgovcic

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2018

Login to get access

Abstract

Purpose

In this study, a therapeutic drug monitoring (TDM) of erlotinib in pancreatic cancer patients was performed over 50 weeks to reveal possible alterations in erlotinib plasma concentrations. Additionally, a physiologically based pharmacokinetic (PBPK) model was created to assess such variations in silico.

Methods

Patients with advanced pancreatic cancer received a chemotherapeutic combination of 100 mg erlotinib q.d., 500–900 mg capecitabine b.d. and 5 mg/kg bevacizumab q.2wks. Samples were analyzed by HPLC and the results were compared to a PBPK model, built with the software GastroPlus™ and based on calculated and literature data.

Results

The erlotinib plasma concentrations did not show any accumulation, but displayed a high inter-patient variability over the whole investigated period. Trough plasma concentrations ranged from 0.04 to 1.22 µg/ml after day 1 and from 0.01 to 2.4 µg/ml in the long-term assessment. 7% of the patients showed concentrations below the necessary activity threshold of 0.5 µg/ml during the first week. The impact of some co-variates on the pharmacokinetic parameters Cmax and AUC0–24 were shown in a PBPK model, including food effects, changes in body weight, protein binding or liver function and the concomitant intake of gastric acid reducing agents (ARAs).

Conclusion

This study presents the approach of combining TDM and PBPK modeling for erlotinib, a drug with a high interaction potential. TDM is an important method to monitor drugs with increased inter-patient variability, additionally, the PBPK model contributed valuable insights to the interaction mechanisms involved, resulting in an effective combination from a PK perspective to ensure a safe treatment.
Literature
2.
go back to reference Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132CrossRefPubMed Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132CrossRefPubMed
3.
go back to reference Sahmanovic A, Buchner P, Lichtneckert M et al (2013) P-0042 pharmacokinetics of erlotinib and its main metabolite OSI420 in advanced pancreatic cancer patients when combined with escalating doses of capecitabine. Ann Oncol 24:iv48-iv48CrossRef Sahmanovic A, Buchner P, Lichtneckert M et al (2013) P-0042 pharmacokinetics of erlotinib and its main metabolite OSI420 in advanced pancreatic cancer patients when combined with escalating doses of capecitabine. Ann Oncol 24:iv48-iv48CrossRef
4.
go back to reference Van Cutsem E, Verslype C, Beale P et al (2008) A phase Ib dose-escalation study of erlotinib, capecitabine and oxaliplatin in metastatic colorectal cancer patients. Ann Oncol 19:332–339CrossRefPubMed Van Cutsem E, Verslype C, Beale P et al (2008) A phase Ib dose-escalation study of erlotinib, capecitabine and oxaliplatin in metastatic colorectal cancer patients. Ann Oncol 19:332–339CrossRefPubMed
5.
6.
go back to reference Chu MP, Ghosh S, Chambers CR et al (2015) Gastric acid suppression is associated with decreased erlotinib efficacy in non-small-cell lung cancer. Clin Lung Cancer 16:33–39CrossRefPubMed Chu MP, Ghosh S, Chambers CR et al (2015) Gastric acid suppression is associated with decreased erlotinib efficacy in non-small-cell lung cancer. Clin Lung Cancer 16:33–39CrossRefPubMed
7.
go back to reference Kletzl H, Giraudon M, Abt M et al (2015) Effect of gastric pH on erlotinib pharmacokinetics in healthy individuals: omeprazole and ranitidine. Anticancer Drugs 26:565–572CrossRefPubMed Kletzl H, Giraudon M, Abt M et al (2015) Effect of gastric pH on erlotinib pharmacokinetics in healthy individuals: omeprazole and ranitidine. Anticancer Drugs 26:565–572CrossRefPubMed
8.
go back to reference Planchard D, Roussy G (2016) Can an acidic beverage reduce interactions between proton pump inhibitors and erlotinib? J Clin Oncol 34:1292–1294CrossRefPubMed Planchard D, Roussy G (2016) Can an acidic beverage reduce interactions between proton pump inhibitors and erlotinib? J Clin Oncol 34:1292–1294CrossRefPubMed
9.
go back to reference Frohna P, Lu J, Eppler S et al (2006) Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol 46:282–290CrossRefPubMed Frohna P, Lu J, Eppler S et al (2006) Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol 46:282–290CrossRefPubMed
10.
go back to reference O’Bryant CL, Haluska P, Rosen L et al (2011) An open-label study to describe pharmacokinetic parameters of erlotinib in patients with advanced solid tumors with adequate and moderately impaired hepatic function. Cancer Chemother Pharmacol 69:605–612CrossRefPubMed O’Bryant CL, Haluska P, Rosen L et al (2011) An open-label study to describe pharmacokinetic parameters of erlotinib in patients with advanced solid tumors with adequate and moderately impaired hepatic function. Cancer Chemother Pharmacol 69:605–612CrossRefPubMed
11.
12.
go back to reference Van Leeuwen RWF, Van Gelder T, Mathijssen RHJ, Jansman FGA (2014) Drug–drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15:e315–e326CrossRefPubMed Van Leeuwen RWF, Van Gelder T, Mathijssen RHJ, Jansman FGA (2014) Drug–drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15:e315–e326CrossRefPubMed
13.
go back to reference Peereboom DM, Ahluwalia MS, Ye X et al (2013) NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro-Oncol 15:490–496CrossRefPubMedPubMedCentral Peereboom DM, Ahluwalia MS, Ye X et al (2013) NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro-Oncol 15:490–496CrossRefPubMedPubMedCentral
14.
go back to reference Hamilton L, Wolf JL, Rusk J et al (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 12:2166–2171CrossRefPubMed Hamilton L, Wolf JL, Rusk J et al (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 12:2166–2171CrossRefPubMed
17.
go back to reference Josephs DH, Fisher DS, Spicer J et al (2013) Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit 35:562–587PubMed Josephs DH, Fisher DS, Spicer J et al (2013) Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit 35:562–587PubMed
18.
go back to reference Lankheet NAG, Knapen LM, Schellens JHM et al (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36:326–334CrossRefPubMed Lankheet NAG, Knapen LM, Schellens JHM et al (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36:326–334CrossRefPubMed
19.
go back to reference Gao B, Yeap S, Clements A et al (2012) Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 30:4017–4025CrossRefPubMed Gao B, Yeap S, Clements A et al (2012) Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 30:4017–4025CrossRefPubMed
20.
go back to reference Jones MH, Gardner IB, Watson KJ (2009) Modelling and PBPK simulation in drug discovery. AAPS J 1:155–166CrossRef Jones MH, Gardner IB, Watson KJ (2009) Modelling and PBPK simulation in drug discovery. AAPS J 1:155–166CrossRef
21.
go back to reference Parrott N, Lukacova V, Fraczkiewicz G et al (2009) Predicting Pharmacokinetics of drugs using physiologically based modeling—application to food effects. AAPS J 11:45–53CrossRefPubMedPubMedCentral Parrott N, Lukacova V, Fraczkiewicz G et al (2009) Predicting Pharmacokinetics of drugs using physiologically based modeling—application to food effects. AAPS J 11:45–53CrossRefPubMedPubMedCentral
22.
go back to reference Kostewicz ES, Aarons L, Bergstrand M et al (2014) PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 57:300–321CrossRefPubMed Kostewicz ES, Aarons L, Bergstrand M et al (2014) PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 57:300–321CrossRefPubMed
25.
go back to reference Lepper ER, Swain SM, Tan AR et al (2003) Liquid-chromatographic determination of erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor. J Chromatogr B Analyt Technol Biomed Life Sci 796:181–188CrossRefPubMed Lepper ER, Swain SM, Tan AR et al (2003) Liquid-chromatographic determination of erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor. J Chromatogr B Analyt Technol Biomed Life Sci 796:181–188CrossRefPubMed
26.
go back to reference Simulations Plus Inc (2015) Gastro Plus user manual Simulations Plus Inc (2015) Gastro Plus user manual
27.
go back to reference Pang KS, Durk MR (2010) Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn 37:591–615CrossRefPubMed Pang KS, Durk MR (2010) Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn 37:591–615CrossRefPubMed
28.
go back to reference Amidon GL, Lennernäs H, Shah VP et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420CrossRefPubMed Amidon GL, Lennernäs H, Shah VP et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420CrossRefPubMed
29.
go back to reference Thelen K, Coboeken K, Willmann S et al (2011) Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci 100:5324–5345CrossRefPubMed Thelen K, Coboeken K, Willmann S et al (2011) Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci 100:5324–5345CrossRefPubMed
30.
go back to reference Thelen K, Coboeken K, Willmann S et al (2012) Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms. J Pharm Sci 101:1267–1280CrossRefPubMed Thelen K, Coboeken K, Willmann S et al (2012) Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms. J Pharm Sci 101:1267–1280CrossRefPubMed
31.
go back to reference Parrott NJ, Yu LJ, Takano R et al (2016) Physiologically based absorption modeling to explore the impact of food and gastric pH changes on the pharmacokinetics of alectinib. AAPS J 18:1464–1474CrossRefPubMed Parrott NJ, Yu LJ, Takano R et al (2016) Physiologically based absorption modeling to explore the impact of food and gastric pH changes on the pharmacokinetics of alectinib. AAPS J 18:1464–1474CrossRefPubMed
32.
go back to reference Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807CrossRefPubMed Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807CrossRefPubMed
33.
go back to reference Rasmussen L, Oster-Jørgensen E, Qvist N et al (1999) The effects of omeprazole on intragastric pH, intestinal motility, and gastric emptying rate. Scand J Gastroenterol 34:671–675CrossRefPubMed Rasmussen L, Oster-Jørgensen E, Qvist N et al (1999) The effects of omeprazole on intragastric pH, intestinal motility, and gastric emptying rate. Scand J Gastroenterol 34:671–675CrossRefPubMed
34.
go back to reference Ranson M, Shaw H, Wolf J et al (2010) A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva, OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemother Pharmacol 66:53–58CrossRefPubMed Ranson M, Shaw H, Wolf J et al (2010) A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva, OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemother Pharmacol 66:53–58CrossRefPubMed
35.
go back to reference Lu J-F, Eppler SM, Wolf J et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 80:136–145CrossRefPubMed Lu J-F, Eppler SM, Wolf J et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 80:136–145CrossRefPubMed
36.
go back to reference Yamamoto N, Horiike A, Fujisaka Y et al (2008) Phase I dose-finding and pharmacokinetic study of the oral epidermal growth factor receptor tyrosine kinase inhibitor Ro50-8231 (erlotinib) in Japanese patients with solid tumors. Cancer Chemother Pharmacol 61:489–496CrossRefPubMed Yamamoto N, Horiike A, Fujisaka Y et al (2008) Phase I dose-finding and pharmacokinetic study of the oral epidermal growth factor receptor tyrosine kinase inhibitor Ro50-8231 (erlotinib) in Japanese patients with solid tumors. Cancer Chemother Pharmacol 61:489–496CrossRefPubMed
Metadata
Title
Monitoring of erlotinib in pancreatic cancer patients during long-time administration and comparison to a physiologically based pharmacokinetic model
Authors
Andrea Gruber
Martin Czejka
Philipp Buchner
Marie Kitzmueller
Nairi Kirchbaumer Baroian
Christian Dittrich
Azra Sahmanovic Hrgovcic
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2018
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-018-3545-4

Other articles of this Issue 4/2018

Cancer Chemotherapy and Pharmacology 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine