Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 2/2018

01-02-2018 | Original Article

Targeting BRCA1/2 deficient ovarian cancer with CNDAC-based drug combinations

Authors: Xiaojun Liu, Yingjun Jiang, Billie Nowak, Bethany Qiang, Nancy Cheng, Yuling Chen, William Plunkett

Published in: Cancer Chemotherapy and Pharmacology | Issue 2/2018

Login to get access

Abstract

Purpose

The mechanism of action of CNDAC (2′-C-cyano-2′-deoxy-1-β-d-arabino-pentofuranosyl-cytosine) is unique among deoxycytidine analogs because upon incorporation into DNA it causes a single strand break which is converted to a double strand break after DNA replication. This lesion requires homologous recombination (HR) for repair. CNDAC, as the parent nucleoside, DFP10917, and as an oral prodrug, sapacitabine, are undergoing clinical trials for hematological malignancies and solid tumors. The purpose of this study is to investigate the potential of CNDAC for the therapy of ovarian cancer (OC).

Methods

Drug sensitivity was evaluated using a clonogenic survival assay. Drug combination effects were quantified by median effect analysis.

Results

OC cells lacking function of the key HR genes, BRCA1 or BRCA2, were more sensitive to CNDAC than corresponding HR proficient cells. The sensitization was associated with greater levels of DNA damage in response to CNDAC at clinically achievable concentrations, manifested as chromosomal aberrations. Three classes of CNDAC-based drug combinations were investigated. First, the PARP1 inhibitors, rucaparib and talazoparib, were selectively synergistic with CNDAC in BRCA1/2 deficient OC cells (combination index < 1) at a relatively low concentration range. Second, cisplatin and oxaliplatin had additive combination effects with CNDAC (combination index ~ 1). Finally, paclitaxel and docetaxel achieved additive cell-killing effects with CNDAC at concentration ranges of the taxanes similar for both BRCA1/2 deficient and proficient OC cells.

Conclusions

This study provides mechanistic rationales for combining CNDAC with PARP inhibitors, platinum compounds and taxanes in ovarian cancer lacking BRCA1/2 function.
Appendix
Available only for authorised users
Literature
3.
go back to reference Berchuck A, Heron KA, Carney ME, Lancaster JM, Fraser EG, Vinson VL, Deffenbaugh AM, Miron A, Marks JR, Futreal PA, Frank TS (1998) Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4(10):2433–2437PubMed Berchuck A, Heron KA, Carney ME, Lancaster JM, Fraser EG, Vinson VL, Deffenbaugh AM, Miron A, Marks JR, Futreal PA, Frank TS (1998) Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4(10):2433–2437PubMed
4.
go back to reference Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD, 2nd, Abkevich V, Potter J, Pruss D, Glenn P, Li Y, Li J, Gonzalez-Angulo AM, McCune KS, Markman M, Broaddus RR, Lanchbury JS, Lu KH, Mills GB (2010) Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28 (22):3570–3576. https://doi.org/10.1200/JCO.2009.27.2997. (pii:JCO.2009.27.2997)CrossRefPubMedPubMedCentral Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD, 2nd, Abkevich V, Potter J, Pruss D, Glenn P, Li Y, Li J, Gonzalez-Angulo AM, McCune KS, Markman M, Broaddus RR, Lanchbury JS, Lu KH, Mills GB (2010) Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28 (22):3570–3576. https://​doi.​org/​10.​1200/​JCO.​2009.​27.​2997. (pii:JCO.2009.27.2997)CrossRefPubMedPubMedCentral
5.
go back to reference Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60(19):5329–5333PubMed Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60(19):5329–5333PubMed
9.
go back to reference Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. https://doi.org/10.1038/nature03445. (pii:Nature03445)CrossRefPubMed Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. https://​doi.​org/​10.​1038/​nature03445. (pii:Nature03445)CrossRefPubMed
17.
go back to reference Matsuda A (1995) 2′-C-Cyano-2′-deoxy-1-beta-d-arabinofuranosyl-cytosine(CNDAC): a mechanism-based DNA-strandbreaking antitumor nucleoside. Nucleosides Nucleotides 14:461–471CrossRef Matsuda A (1995) 2′-C-Cyano-2′-deoxy-1-beta-d-arabinofuranosyl-cytosine(CNDAC): a mechanism-based DNA-strandbreaking antitumor nucleoside. Nucleosides Nucleotides 14:461–471CrossRef
18.
go back to reference Azuma A, Huang P, Matsuda A, Plunkett W (2001) Cellular pharmacokinetics and pharmacodynamics of the deoxycytidine analog 2′-C-cyano-2′-deoxy-1-beta-d-arabino-pentofuranosylcytosine (CNDAC). Biochem Pharmacol 61(12):1497–1507. (pii:S0006295201006177)CrossRefPubMed Azuma A, Huang P, Matsuda A, Plunkett W (2001) Cellular pharmacokinetics and pharmacodynamics of the deoxycytidine analog 2′-C-cyano-2′-deoxy-1-beta-d-arabino-pentofuranosylcytosine (CNDAC). Biochem Pharmacol 61(12):1497–1507. (pii:S0006295201006177)CrossRefPubMed
19.
go back to reference Azuma A, Huang P, Matsuda A, Plunkett W (2001) 2′-C-cyano-2′-deoxy-1-beta-d-arabino-pentofuranosylcytosine: a novel anticancer nucleoside analog that causes both DNA strand breaks and G(2) arrest. Mol Pharmacol 59(4):725–731CrossRefPubMed Azuma A, Huang P, Matsuda A, Plunkett W (2001) 2′-C-cyano-2′-deoxy-1-beta-d-arabino-pentofuranosylcytosine: a novel anticancer nucleoside analog that causes both DNA strand breaks and G(2) arrest. Mol Pharmacol 59(4):725–731CrossRefPubMed
22.
go back to reference Shapiro GI, Cleary JH, Tolaney JM, Ghandi SM, Kwak L, Clark EL, Wolanski JW, Bell A, Schulz T, Frame J, Saladino S, Hogben C, Rodig M, Chiao SJ, Blake JH D (2013) Responses to sequential sapacitabine and seliciclib in patients with brca-deficient solid tumors. Cancer Res 73(8 Suppl). https://doi.org/10.1158/1538-7445.AM2013-LB-202 Shapiro GI, Cleary JH, Tolaney JM, Ghandi SM, Kwak L, Clark EL, Wolanski JW, Bell A, Schulz T, Frame J, Saladino S, Hogben C, Rodig M, Chiao SJ, Blake JH D (2013) Responses to sequential sapacitabine and seliciclib in patients with brca-deficient solid tumors. Cancer Res 73(8 Suppl). https://​doi.​org/​10.​1158/​1538-7445.​AM2013-LB-202
23.
go back to reference Kantarjian H, Garcia-Manero G, O’Brien S, Faderl S, Ravandi F, Westwood R, Green SR, Chiao JH, Boone PA, Cortes J, Plunkett W (2010) Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome. J Clin Oncol 28(2):285–291. https://doi.org/10.1200/JCO.2009.25.0209. (pii:JCO.2009.25.0209)CrossRefPubMed Kantarjian H, Garcia-Manero G, O’Brien S, Faderl S, Ravandi F, Westwood R, Green SR, Chiao JH, Boone PA, Cortes J, Plunkett W (2010) Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome. J Clin Oncol 28(2):285–291. https://​doi.​org/​10.​1200/​JCO.​2009.​25.​0209. (pii:JCO.2009.25.0209)CrossRefPubMed
24.
go back to reference Kantarjian H, Faderl S, Garcia-Manero G, Luger S, Venugopal P, Maness L, Wetzler M, Coutre S, Stock W, Claxton D, Goldberg SL, Arellano M, Strickland SA, Seiter K, Schiller G, Jabbour E, Chiao J, Plunkett W (2012) Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomised phase 2 study. Lancet Oncol 13(11):1096–1104. https://doi.org/10.1016/S1470. (pii:S1470-2045(12)70436-9)CrossRefPubMedPubMedCentral Kantarjian H, Faderl S, Garcia-Manero G, Luger S, Venugopal P, Maness L, Wetzler M, Coutre S, Stock W, Claxton D, Goldberg SL, Arellano M, Strickland SA, Seiter K, Schiller G, Jabbour E, Chiao J, Plunkett W (2012) Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomised phase 2 study. Lancet Oncol 13(11):1096–1104. https://​doi.​org/​10.​1016/​S1470. (pii:S1470-2045(12)70436-9)CrossRefPubMedPubMedCentral
25.
go back to reference Kantarjian HM, Jabbour EJ, Garcia-Manero G, Kadia TM, DiNardo CD, Daver NG, Borthakur G, Jain N, Waukau J, Kwari M, Anderson BD, Lizuka K, Zhang CJ, Ravandi C, Plunkett F W (2016) Phase I/II study of DFP-10917 in relapsed/refractory AML demonstrates efficacy and safety profile suitable for phase III study. In: American Society of Hematology 58th Annual Meeting: Abstr# 2822 Kantarjian HM, Jabbour EJ, Garcia-Manero G, Kadia TM, DiNardo CD, Daver NG, Borthakur G, Jain N, Waukau J, Kwari M, Anderson BD, Lizuka K, Zhang CJ, Ravandi C, Plunkett F W (2016) Phase I/II study of DFP-10917 in relapsed/refractory AML demonstrates efficacy and safety profile suitable for phase III study. In: American Society of Hematology 58th Annual Meeting: Abstr# 2822
28.
go back to reference Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRef Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRef
31.
go back to reference Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67CrossRefPubMed Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67CrossRefPubMed
36.
go back to reference Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, Chiu HJ, Ricks TK, Palmby T, Russell AM, Ladouceur G, Pfuma E, Li H, Zhao L, Liu Q, Venugopal R, Ibrahim A, Pazdur R (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261. https://doi.org/10.1158/1078-0432.CCR-15-0887 CrossRefPubMed Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, Chiu HJ, Ricks TK, Palmby T, Russell AM, Ladouceur G, Pfuma E, Li H, Zhao L, Liu Q, Venugopal R, Ibrahim A, Pazdur R (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261. https://​doi.​org/​10.​1158/​1078-0432.​CCR-15-0887 CrossRefPubMed
Metadata
Title
Targeting BRCA1/2 deficient ovarian cancer with CNDAC-based drug combinations
Authors
Xiaojun Liu
Yingjun Jiang
Billie Nowak
Bethany Qiang
Nancy Cheng
Yuling Chen
William Plunkett
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 2/2018
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-017-3483-6

Other articles of this Issue 2/2018

Cancer Chemotherapy and Pharmacology 2/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine